Page 1 :
SINGLE CORRECT ANSWER TYPE, , 8. Ifa =, , 1. If 6is eliminated from the equations x=a cos(6- a) and, , +tan 4a tan a) is, , 2xy, c o s (a-B) is equal, , y=bcos(0-B), then, , ab, , to, , (1) sec(a-B), , (2) cosec (a-B), , (3) cos(-B), , (4) sin'(a -B), , then the value of (tan a tan 2 + tan 2a tan 4a, , 14, (1) 1, , (2) 1/2, , (3) 2, , (4) 1/3, , 9. The value of expression, 2(sin1° + sin 2° +sin 3°+..+ sin 89°), , 2. If sin(y+z-x), sin(z + x -y), sin(x +y- z) are in A.P.,, , 2(cos1° + cos 2°+..+COs 44°)+1, , equals, , then tan x, tany, tan z are in, (1) A.P, , (2) G.P, , (3) H.P., , 3. If tan, , (4) none of these, , TA+tan TT-B, +tans, , 4, , 4, , T-C1., then AABC is, 4, , () equilateral, , (2) isosceles, , (3) scalene, , (4) none of these, , 4. IfA,, , sin, , B,, , C, , (1) v2, , (2) 1/2, , (3) 1/2, , (4) 0, , sin A-sin B, , 10., , (1) tan(A-B), (3) cot(A-B), (1)-1, , (2) 0, , 2, , (3) 1, , (4) none of these, , 12. IfA and B are acute positive angles satisfying the equations, 3 sin'A + 2 sin B, , 3) function of C, 5. If y = (1 + tan A) (1, , (2), , function, , (4), , none, , of A,, , B, , thenA+2B is, , of these, , - tan B), where A - B, , equal, , (1), 4, , 1 and 3 sin 2 A, , (4), 6, , 4, , (1) 9, , (2) 4, , (3) 27, , (4) 81, , lfcos a t cos B=0= sin a+ sinB, then cos20+ cos23, , 13. If2 sin 2a = tan ß+ cot B, a, Be, , (1) s, , (2), , 4, , (2)-2 cos(a + B), , (3) 2 sin(a+B), , (4) 2 cos(+ B), is equal to, , TT, , T | . then the, , value of a+ ßis, is, , equal to, , (1)-2 sin(a+ B), , 2 sin 2B - 0,, , to, , then, , (3), , 7. 2-sin a- cosa, , =, , (2), , (y+1 is equal to, , 6., , (4) cot(A +B), , B, , sin A cot-cos A is, , (1) independent of A., , (2) tan(A + B), , 11. If tan6=2 tan o+1, then cos 26+ sin Ù equals, , Care angles of atriangle, then 2sincosec, B, C, , is equal to, , sin A cos A- sin B cos B, , (3), , 37T, , (4), , 2, , 4, , 14. The most general value for which tan -, , 1, cos =, , is (n E Z), , Sin a-cOs, , 77T, , (1) sec 8, , (2) cos82, , (1) nTt+, , (3) tan _ T, , (4) cot, , (3) 2nT+ 774, , 4, , (2) nt+(-1", , 4, , (4) none of these, , 2
Page 2 :
15., , The number of solutions of sinx, , +cos2r + cos 3x, 0, , 16., , <x<, , + sin 2x, , + sin 3x =, , cosx, , 27, is, , (1) 7, , (2) 5, , (3) 4, , (4) 6, , The sum of all the solutions of cot 6 = sin 20 (0 #, , nT,, , n integer), 0 < 0<T, is, (1) 372, , (2) T, , (3) 37r/4, , (4) 27T, , 17. The number of solutions of equation 6 cos 20+2 cos (0/2), +2 sin6= 0, -7< 0<Tis, (1) 3, , (2) 4, , (3) 5, , (4) 6, , 18. Let 0<6<0,<0,< ... denote the positive solution of the, , equation 3, , +3, , cos, , 6=2 sin, , 0. The value of 0 +0,, , (1) 67, , (2) 77, , (3) 87, , (4) 47, , 19. The least positive solution of cot, in, , (1), , (2), , (3)129, , (4), , 3, , sin2x= V3, , 9 6, , 32, , is, , lies
Page 3 :
20. Ifu= Na cos 0+b'sin 0 + Va sin G+b cos? ., then the difference between the max1mum and minimum, , values ofu, , is given by, , (1) 2(a+ b), , (2) 2Na +B, , (3) (a+ b, , (4) (a- b), , NUMERICAL VALUE TYPE, 21., , If2 sin (7/2) cosx) =1 - cos(, , sin 2x), x# (2n + 1) T2, , neI, then cos2x is equal to, 22. The total number of solution of sin"x, , +, , cos"x, , sinx, , =, , cosr, , in [0, 27] is equal to, 23. Number of solutions of equation, X, , -2, , 2 sinsin, , x, , =cos, , x-, , sina x, , 25., , x, , [0, 27t) is, , 2, , X, , +, , sec r, , =, , 2 cos, , N, , interval [0, 3r] satistying, the, in, ofx, values, of, 0 is, equation 2 sin x + 5 sin x 3, , The number, , -, , the, , cos, , for xE [0, 4r] is, , 24. The number of solutions to tan, , in, , 2 sin, , 2, , =