Question 1 :
If a matrix has $$13$$ elements, then the possible<br>dimensions (orders) of the matrix are
Question 2 :
If $$\displaystyle  \begin{vmatrix} x & y   \\ 1 & 6   \end{vmatrix} $$ = $$\displaystyle  \begin{vmatrix} 1 & 8   \\ 1 & 6   \end{vmatrix} $$ then x+2y=
Question 3 :
If $$A = \begin{bmatrix}1\end{bmatrix}$$, then the order of the matrix is
Question 5 :
If $$m  \begin{bmatrix} -3 & 4  \end{bmatrix}+n\begin{bmatrix} 4 & -3  \end{bmatrix}=\begin{bmatrix} 10 & -11  \end{bmatrix}$$, then $$ 3m\ + 7n=$$<br/>
Question 6 :
If $$\displaystyle \begin{vmatrix} a & b &0\\ 0 & a & b\\b&a&0\end{vmatrix}= 0$$, then the order is:
Question 7 :
If $$A = \begin{bmatrix}2 & 3 & 4 \\ -3 & 4 & 8\end{bmatrix}$$ and $$B = \begin{bmatrix}-1 & 4 & 7 \\ -3 & -2 & 5\end{bmatrix}$$, Then $$\quad A+B = \begin{bmatrix}1 & a & b \\ c & 2 & 13\end{bmatrix}$$<br/>Find the value of $$a+b+c=$$
Question 8 :
The order of the matrix $$A$$ is $$3\times 5$$ and that of $$B$$ is $$2\times 3$$. The order of the matrix $$BA$$ is:
Question 9 :
The order of a matrix $$\begin{bmatrix} 2& 5& 7\end{bmatrix} $$ is 
Question 10 :
If $$A=\displaystyle \left[ \begin{matrix} 1 &2 \\ 3& 4 \end{matrix} \right] $$, then which of the following is not an element of $$A$$?
Question 11 :
If $$ A= \begin{bmatrix} 1 & 2\end{bmatrix}, B=\begin{bmatrix} 3 & 4\end{bmatrix}$$ then $$A+B=$$
Question 12 :
If the sum of the matrices $$\begin{bmatrix} x \\ x \\ y \end{bmatrix},\begin{bmatrix} y \\ y \\ z \end{bmatrix}$$ and $$\begin{bmatrix} z \\ 0 \\ 0 \end{bmatrix}$$ is the matrix $$\begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix}$$, then what is the value of $$y$$?
Question 14 :
<b>If $$A$$ is a square of order $$3$$, then</b> $$\left| Adj\left( Adj{ A }^{ 2 } \right)\right| =$$
Question 15 :
If $$A = \begin{bmatrix}1 & -2 \\ 3 & 0\end{bmatrix}, \space B = \begin{bmatrix}-1 & 4 \\ 2 & 3\end{bmatrix},\space C = \begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}$$, then $$5A - 3B + 2C =$$
Question 16 :
The order the matrix is $$ \begin{bmatrix}2 & 3 & 4 \\ 9 & 8 & 7 \end{bmatrix}$$ is <br/>
Question 17 :
If $$\displaystyle A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 3 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$ and $$\displaystyle B = \begin{bmatrix} 0 & -2 & 4 \\ 1 & 3 & 2 \\ -1 & 1 & 5 \end{bmatrix}$$, then $$A + B$$ is
Question 19 :
If $$2A-\begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix}=\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$, then $$A$$ is equal to-
Question 20 :
If A=$$\displaystyle \begin{vmatrix} 0 & 1 \\ 2 & 4 \end{vmatrix} $$, B=$$\displaystyle \begin{vmatrix} -1 & 1 \\ 2 & 2 \end{vmatrix} $$,<br>C=$$\displaystyle \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} $$, then 2A+3B-C=<br>
Question 21 :
If $$A = \begin{bmatrix} 0 & 2 & 3 \\ 3 & 5 & 7 \end{bmatrix}$$ and $$B = \begin{bmatrix} 1 & 3 & 7 \\ 2 & 4 & 1 \end{bmatrix}$$,  if $$A+B = \begin{bmatrix} 1 & 5 & 10 \\ 5 & k & 8 \end{bmatrix} \\ $$<br/>Find the value of k 
Question 22 :
The order of $$\begin{bmatrix}x & y & z\end{bmatrix}\begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\begin{bmatrix}x\\ y \\z\end{bmatrix}$$ is
Question 23 :
If for a matrix $$\displaystyle A,{ A }+I=O$$, where $$I$$ is an identity matrix, then $$A$$ equals
Question 24 :
The Inverse of a square matrix, if it exist is unique.
Question 25 :
IF A=$$\displaystyle \begin{vmatrix} 5 & x \\ y & 6 \end{vmatrix} $$ B=$$\displaystyle \begin{vmatrix} -4 & y \\ -4 & -5 \end{vmatrix} $$and A+B=I then the values of x and y respectively are
Question 26 :
If order of matrix $$A$$ is $$4\times3$$ and order of matrix $$B$$ is $$3\times5$$ then order of matrix $$B'A'$$ is:
Question 27 :
A square matrix $$(a_{ij})$$ in which $$a_{ij}=0$$ for $$i \neq j$$ and $$a_{ij}= k (constant)$$ for $$i=j$$ is a<br/>
Question 28 :
If $$A = \displaystyle \left[ \begin{matrix} 1 &2 \\ 3& 4 \end{matrix} \right] $$, then number of elements in $$A$$ are
Question 29 :
A $$2 \times 2$$ matrix whose elements $$\displaystyle a_{ij}$$ are given by $$\displaystyle a_{ij}=i-j$$ is
Question 30 :
If $$A=\begin{bmatrix}5 & 2\\ 7 & 4\end{bmatrix}$$ is a $$2\times 2$$ matrix, then $$a_{12}$$=
Question 31 :
The element in the second row and third column of the matrix $$\displaystyle \begin{bmatrix}4 &5  &-6 \\3  &-4  &3 \\2  &1  &0 \end{bmatrix}$$ is:
Question 33 :
If $$\displaystyle A=\begin{bmatrix}x &y \\z  &w \end{bmatrix},B=\begin{bmatrix}x &-y \\-z  &w \end{bmatrix}$$ and $$C=\begin{bmatrix}-2x &0 \\0  &-2w \end{bmatrix},$$ then $$A+B+C$$ is a:
Question 34 :
If A+$$\displaystyle \begin{vmatrix} 4 & 2 \\ 1 & 3 \end{vmatrix} $$=$$\displaystyle \begin{vmatrix} 6 & 9 \\ 1 & 4 \end{vmatrix} $$ then A=
Question 35 :
If $$\begin{bmatrix}x & 0 \\ 1 & y\end{bmatrix} +\begin{bmatrix}-2 & 1 \\ 3 & 4\end{bmatrix} =\begin{bmatrix}3 & 5 \\ 6 & 3\end{bmatrix} -\begin{bmatrix}2 & 4 \\ 2 & 1\end{bmatrix}$$, then
Question 36 :
$${a}^{-1}+{b}^{-1}+{c}^{-1}=0$$ such that $$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix}=\triangle$$  then the value of $$\triangle$$  is
Question 37 :
If $$\begin{bmatrix}r+4 & 6 \\3 & 3\end{bmatrix} = \begin{bmatrix} 5 & r+5 \\ r+2 & 4 \end{bmatrix}$$ then $$r= $$ <br/>
Question 38 :
If $$A=\begin{bmatrix} { a }^{ 2 } & ab & ac \\ ab & { b }^{ 2 } & bc \\ ac & bc & { c }^{ 2 } \end{bmatrix}$$ and $${a}^{2}+{b}^{2}+{c}^{2}=1$$ then $${A}^{2}=$$
Question 39 :
If $$A+B = \begin{bmatrix}1 & 0 \\ 1 & 1\end{bmatrix}$$ and $$A-2B = \begin{bmatrix}-1 & 1 \\ 0 & -1\end{bmatrix}$$, then $$A$$ =
Question 41 :
If $$2A+B=\begin{bmatrix} 6 & 4 \\ 6 & -11 \end{bmatrix}$$ and $$A-B=\begin{bmatrix} 0 & 2 \\ 6 & 2 \end{bmatrix}$$, then $$A=$$
Question 43 :
If a matrix has $$m$$ rows and $$n$$ columns then its order is
Question 44 :
The number of possible orders of a matrix containing $$24$$ elements are:
Question 45 :
If $$m[-3\ \ \ 4]+n[4\ \ \ -3]=[10\ \ \ -11]$$ then $$3m+7n=$$
Question 46 :
The number of different possible orders of matrices having 18 identical elements is
Question 47 :
Construct the matrix of order $$3 \times 2$$ whose elements are given by $$a_{ij} = 2i - j$$
Question 48 :
If A=$$\displaystyle \begin{vmatrix} 1 \\ 3 \end{vmatrix} $$ B=$$\displaystyle \begin{vmatrix} -1 \\ 4 \end{vmatrix} $$ then 2A+B =
Question 49 :
If$$\displaystyle \begin{vmatrix} x & 1 \\ y & 2 \end{vmatrix} $$-$$\displaystyle \begin{vmatrix} y & 1 \\ 8 & 0 \end{vmatrix} $$=$$\displaystyle \begin{vmatrix} 2 & 0 \\ -x & 2 \end{vmatrix} $$ then the values of x and y respectively are
Question 50 :
Suppose $$A$$ and $$B$$ are two square matrices of same order. If $$A,B$$ are symmetric matrices and $$AB=BA$$ then $$AB$$ is