Question 1 :
If the matrices $A=\begin{bmatrix}2 & 1 & 3 \\4 & 1 & 0\end{bmatrix}$ and $B=\begin{bmatrix}1 & -1\\ 0 & 2 \\5 & 0\end{bmatrix}$, then AB will be
Question 2 :
If $[2\ 3\ 4] \begin{bmatrix}1 & x &3 \\ 2 & 4 & 5\\ 3 & 2 &x \end{bmatrix} \begin{bmatrix} x\\ 2 \\ 0 \end{bmatrix} = 0$, then $x =$ ________.<br>
Question 3 :
What is the output for the following matrix multiplication $A_{3 \times 2}\times B_{2\times 3}$?<br>
Question 4 :
If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, then $BA =$
Question 5 :
If $A = \begin{bmatrix}a & b\end{bmatrix},\space B = \begin{bmatrix}-b & -a \end{bmatrix}$ and $C = \begin{bmatrix}a \\ -a\end{bmatrix}$, then the correct statement is
Question 6 :
Given $A, B, C$ are three matrices such that <br/>$A = \begin{bmatrix}x & y & z\end{bmatrix}$, $B = \begin{bmatrix} a  & h & g \\ h & b & f \\ g & f & c\end{bmatrix}$, $C = \begin{bmatrix}x \\ y \\ z\end{bmatrix}.$ Evaluate $ABC$.<br/>
Question 8 :
If $\begin{bmatrix} 3 & 2 & -1 \\ 4 & 9 & 2 \\ 5 & 0 & -2 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=\begin{bmatrix} 0 \\ 7 \\ 2 \end{bmatrix}$, then $(x,\ y,\ z)=$
Question 10 :
If $A = \begin{bmatrix} 1& 4 & 4\\ 4 & 1 & 4\\ 4 & 4 & 1\end{bmatrix}$, then $A^{2} - 6A =$ _____.<br>
Question 11 :
If $A=<br/>\begin{bmatrix}<br/>2 & -1 \\<br/>-1 & 2<br/>\end{bmatrix}$ and $I$ is the unit matrix of order $2$, then $A^2$equals
Question 12 :
If the matrix $A = \begin{bmatrix}2 & 0 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 2\end{bmatrix}$, then $A^n=\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ b & 0 & a\end{bmatrix}. n \in N$ where
Question 14 :
If $\left[ \begin{matrix} x & 4 & -1 \end{matrix} \right] \left[ \begin{matrix} 2 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & 4 \end{matrix} \right] \left[ \begin{matrix} x \\ 4 \\ -1 \end{matrix} \right] =0,$ then $x=$
Question 15 :
If $O\left( A \right) =2\times 3,$ $O\left( B \right) =3\times 2$ and $O\left( C \right) =3\times 3$, which one of the following is not defined?