Question 2 :
If $(1 - \cos A)/2 = x$, then the value of $x$ is
Question 3 :
Let $x+y$ being acute and if $\sin x.\cos y+\cos x.\sin y=0$ then the value of $\sin x+\sin y=$
Question 6 :
If $\tan { \theta } =3$ and $\theta$ lies in the third quadrant, then the value of $\sin { \theta } $ is
Question 8 :
If range of $f(x)=\cos x, x\in \left(\dfrac {-\pi}{3}, \dfrac {\pi}{6}\right)$ is $(a,b)$, then
Question 10 :
As $\theta$ increases from $\cfrac { \pi }{ 4 } $ to $\cfrac { 5\pi }{ 4 } $, the value of $4\cos { \cfrac { 1 }{ 2 } \theta } $
Question 11 :
Let $f\left( x \right) = \sqrt {\cot \left( {5 + 3x} \right)\left( {\cot \left( 5 \right) + \cot \left( {3x} \right)} \right) - \sqrt {\cot 3x} + 1} $, the domain is
Question 12 :
If the angles A, B and C of a triangle are in an AP and if a, b and c denote the length of the sides opposite to A, B and C respectively then the value of the expression $\displaystyle \frac{a}{c}\sin 2C+\frac{c}{a}\sin 2A$ is
Question 13 :
$\sin ^ { 2 } 6 x - \sin ^ { 2 } 4 x = \sin 2 x . \sin 6 x$
Question 15 :
${\sin ^2}\theta + {\sin ^2}({60^ \circ } + \theta ) + si{n^2}({60^ \circ } - \theta ) = $
Question 17 :
The solution of the equation $ \cos 3\theta = 4\cos \theta \:\cos \left ( \theta +x \right )\:\cos \left ( \theta -x \right )\:\left ( 0< \theta < \pi \right ) $ is
Question 19 :
<div>In $\Delta$ $ABC$ the sides opposite to angles $A, B, C$ are denoted by $a, b, c$ respectively. The value of $(a^2 - b^2 - c^2) \tan A + (a^2 - b^2 + c^2)$ $\tan B$ is equal to</div>
Question 20 :
The equation $ \sqrt {3} \sin x + \cos x = 4 $ has
Question 21 :
In$\Delta ABC$, If $\angle C=60^{\circ}$ and $\dfrac{1}{a+c}+\dfrac{1}{\left (b+c \right )}=\dfrac{k}{a+b+c}$, then the value of $k$ is<br>
Question 22 :
If the angles of a triangle are in the ratio $1 : 1 : 4$, then the ratio of the perimeter of the triangle to its largest side is
Question 23 :
In a $\triangle ABC$, if $\sin { A } \sin { B } =\cfrac { ab }{ { c }^{ 2 } } $, the triangle is
Question 25 :
If $A=\left \{\theta : 2\cos^2\theta +\sin \theta \leq 2\right \}$ and $B=\left \{\theta :\dfrac {\pi}{2}\leq \theta \leq \dfrac {3\pi}{2}\right \}$, then $A\cap B$ is equal to