Question 1 :
If $A = \begin{bmatrix}2 & 3 & 4 \\ -3 & 4 & 8\end{bmatrix}$ and $B = \begin{bmatrix}-1 & 4 & 7 \\ -3 & -2 & 5\end{bmatrix}$, Then $\quad A+B = \begin{bmatrix}1 & a & b \\ c & 2 & 13\end{bmatrix}$<br/>Find the value of $a+b+c=$
Question 3 :
Construct the matrix of order $3 \times 2$ whose elements are given by $a_{ij} = 2i - j$
Question 4 :
If A=$\displaystyle \begin{vmatrix} 1 \\ 3 \end{vmatrix} $ B=$\displaystyle \begin{vmatrix} -1 \\ 4 \end{vmatrix} $ then 2A+B =
Question 5 :
If every row of a matrix $A$ contains $p$ elements and its column contains $q$ elements, then the order of $A$ is
Question 7 :
The number of different possible orders of matrices having 18 identical elements is
Question 8 :
If A=$\displaystyle \begin{vmatrix} 2 & -3 \\ 3 & 2 \end{vmatrix} $ and B=$\displaystyle \begin{vmatrix} 3 & -2 \\ 2 & 3 \end{vmatrix} $ then 2A-B=
Question 9 :
If$\displaystyle \begin{vmatrix} 2 & 3 \\ 4 & 4 \end{vmatrix} $+$\displaystyle \begin{vmatrix} x & 3 \\ y & 1 \end{vmatrix} $=$\displaystyle \begin{vmatrix} 10 & 6 \\ 8 & 5 \end{vmatrix} $,then (x,y)=
Question 10 :
If $m[-3\ \ \ 4]+n[4\ \ \ -3]=[10\ \ \ -11]$ then $3m+7n=$
Question 11 :
A $2 \times 2$ matrix whose elements $\displaystyle a_{ij}$ are given by $\displaystyle a_{ij}=i-j$ is
Question 12 :
<p>The possibility for the formation of rectangular matrices in the matrix algebra are</p>
Question 13 :
The entries of a matrix are integers. Adding an integer to all entries on a row or on a column is called an operation. It is given that for infinitely many integers N one can obtain, after a finite number of operations, a table with all entries divisible by N. Prove that one can obtain, after a finite number of operations, the zero matrix.
Question 14 :
IF A=$\displaystyle \begin{vmatrix} 5 & x \\ y & 6 \end{vmatrix} $ B=$\displaystyle \begin{vmatrix} -4 & y \\ -4 & -5 \end{vmatrix} $and A+B=I then the values of x and y respectively are
Question 15 :
A square matrix $\left[ { a }_{ ij } \right] $ such that ${ a }_{ ij }=0$ for $i\ne j$ and ${ a }_{ ij }=k$ where $k$ is a constant for $i=j$ is called:
Question 16 :
Suppose $A$ and $B$ are two square matrices of same order. If $A,B$ are symmetric matrices and $AB=BA$ then $AB$ is
Question 17 :
If $\begin{bmatrix}x & 0 \\ 1 & y\end{bmatrix} +\begin{bmatrix}-2 & 1 \\ 3 & 4\end{bmatrix} =\begin{bmatrix}3 & 5 \\ 6 & 3\end{bmatrix} -\begin{bmatrix}2 & 4 \\ 2 & 1\end{bmatrix}$, then
Question 18 :
IF A=$\displaystyle \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} $ And B=$\displaystyle \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} $ then A+B=
Question 19 :
The matrix $\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}$ is the matrix reflection in the line
Question 20 :
If $A= \begin{bmatrix} 1 & 2 & 3\end{bmatrix}$, then order is
Question 21 :
If $A = \begin{bmatrix}1 & -2 \\ 3 & 0\end{bmatrix}, \space B = \begin{bmatrix}-1 & 4 \\ 2 & 3\end{bmatrix},\space C = \begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}$, then $5A - 3B + 2C =$
Question 22 :
If $A=\displaystyle \left[ \begin{matrix} 1 &2 \\ 3& 4 \end{matrix} \right] $, then which of the following is not an element of $A$?
Question 23 :
If A+$\displaystyle \begin{vmatrix} 4 & 2 \\ 1 & 3 \end{vmatrix} $=$\displaystyle \begin{vmatrix} 6 & 9 \\ 1 & 4 \end{vmatrix} $ then A=
Question 24 :
The order of the matrix $A$ is $3\times 5$ and that of $B$ is $2\times 3$. The order of the matrix $BA$ is:
Question 25 :
If the matrix $\begin{bmatrix} 1 & 3 & \lambda +2 \\ 2 & 4 & 8 \\ 3 & 5 & 10 \end{bmatrix}$ is singular, then $\lambda=$
Question 27 :
The matrix $A = \begin{bmatrix}0& 0 &4 \\ 0& 4 & 0\\ 4& 0 & 0\end{bmatrix}$ is a<br>
Question 28 :
If $A = \begin{bmatrix} 0 & 2 & 3 \\ 3 & 5 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 3 & 7 \\ 2 & 4 & 1 \end{bmatrix}$,  if $A+B = \begin{bmatrix} 1 & 5 & 10 \\ 5 & k & 8 \end{bmatrix} \\ $<br/>Find the value of k 
Question 29 :
If $\displaystyle \begin{vmatrix} a & b &0\\ 0 & a & b\\b&a&0\end{vmatrix}= 0$, then the order is:
Question 30 :
If $\displaystyle A=\begin{bmatrix}x &y \\z  &w \end{bmatrix},B=\begin{bmatrix}x &-y \\-z  &w \end{bmatrix}$ and $C=\begin{bmatrix}-2x &0 \\0  &-2w \end{bmatrix},$ then $A+B+C$ is a:
Question 31 :
If A=$\displaystyle \begin{vmatrix} 0 & 1 \\ 2 & 4 \end{vmatrix} $, B=$\displaystyle \begin{vmatrix} -1 & 1 \\ 2 & 2 \end{vmatrix} $,<br>C=$\displaystyle \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} $, then 2A+3B-C=<br>
Question 32 :
If $m  \begin{bmatrix} -3 & 4  \end{bmatrix}+n\begin{bmatrix} 4 & -3  \end{bmatrix}=\begin{bmatrix} 10 & -11  \end{bmatrix}$, then $ 3m\ + 7n=$<br/>
Question 33 :
Let $A = \begin{bmatrix} 1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1\end{bmatrix}$. If $u_1$ and $u_2$ are column matrices such that $Au_1 = \begin{bmatrix}1\\0\\0\end{bmatrix}$ and $Au_2 = \begin{bmatrix}0\\1\\0\end{bmatrix}$ then $u_1 + u_2$ is equal to
Question 34 :
If $ A= \begin{bmatrix} 1 & 2\end{bmatrix}, B=\begin{bmatrix} 3 & 4\end{bmatrix}$ then $A+B=$
Question 35 :
If $A = \displaystyle \left[ \begin{matrix} 1 &2 \\ 3& 4 \end{matrix} \right] $, then number of elements in $A$ are
Question 36 :
${a}^{-1}+{b}^{-1}+{c}^{-1}=0$ such that $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix}=\triangle$  then the value of $\triangle$  is
Question 38 :
The order the matrix is $ \begin{bmatrix}2 & 3 & 4 \\ 9 & 8 & 7 \end{bmatrix}$ is <br/>
Question 39 :
If the sum of the matrices $\begin{bmatrix} x \\ x \\ y \end{bmatrix},\begin{bmatrix} y \\ y \\ z \end{bmatrix}$ and $\begin{bmatrix} z \\ 0 \\ 0 \end{bmatrix}$ is the matrix $\begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix}$, then what is the value of $y$?
Question 40 :
If a matrix has $13$ elements, then the possible<br>dimensions (orders) of the matrix are
Question 41 :
If $\displaystyle A=\left [ a_{ij} \right ]_{m\times\:n'}B=\left [ b_{ij} \right ]_{m\times\:n'}$ then the element $\displaystyle C_{23}$ of the matrix $C=A+B$, is:
Question 42 :
If $A= [ 1 \ 2\  3 ]$, then the set of elements of A is
Question 43 :
If order of matrix $A$ is $4\times3$ and order of matrix $B$ is $3\times5$ then order of matrix $B'A'$ is:
Question 44 :
The number of all possible matrices of order $3 \times 3$ with each entry $0$ or $1$ is:
Question 45 :
If for a matrix $\displaystyle A,{ A }+I=O$, where $I$ is an identity matrix, then $A$ equals
Question 46 :
The order of a matrix $\begin{bmatrix} 2& 5& 7\end{bmatrix} $ is 
Question 47 :
$\displaystyle { A=\left[ { a }_{ ij } \right] }_{ m\times n}$ is a square matrix , if
Question 48 :
If $2A-\begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix}=\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$, then $A$ is equal to-
Question 49 :
A square matrix $(a_{ij})$ in which $a_{ij}=0$ for $i \neq j$ and $a_{ij}= k (constant)$ for $i=j$ is a<br/>
Question 50 :
The order of $\begin{bmatrix}x & y & z\end{bmatrix}\begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\begin{bmatrix}x\\ y \\z\end{bmatrix}$ is
Question 52 :
If $A= [a_{ij}]_{2 \times 2}$ and $a_{ij} = i + j$, then A = <br>
Question 53 :
If $A = \begin{bmatrix}2 & -1\\ 3 & 1\end{bmatrix}$ and $B = \begin{bmatrix}1 & 4\\ 7 & 2\end{bmatrix}$,  $3A - 2 B$ is
Question 54 :
<table class="wysiwyg-table"><tbody><tr><td></td><td>Day 1</td><td>Day 2</td><td>Day 3</td></tr><tr><td>Model X</td><td>$20$</td><td>$18$</td><td>$3$</td></tr><tr><td>Model Y</td><td>$16$</td><td>$5$</td><td>$8$</td></tr><tr><td>Model Z</td><td>$19$</td><td>$11$</td><td>$10$</td></tr></tbody></table>The table above shows the number of TV sets that were sold during a three-day sale. The prices of models $X, Y$ and $Z$ are $ $99$, $ $199$, and $ $299$, respectively. Which of the following matrix representations gives the total income, in dollars, received from the sale of the TV sets for each of the three days?
Question 55 :
If $A=\begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B=\begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}$, $2A+B+X=0$, then the matrix $X$ is
Question 56 :
If $\mathrm{A}=\left\{\begin{array}{ll}<br/>0 & 2\\<br/>3 & -4<br/>\end{array}\right\},\ \mathrm{k}\mathrm{A}=\left\{\begin{array}{ll}<br/>0 & 3a\\<br/>2b & 24<br/>\end{array}\right\}$ , then arrange the values of  $k,a,b,$ in ascending order<br/>
Question 57 :
If $\bigl(\begin{smallmatrix} 3x+ 7& 5 \\ y + 1 & 2 - 3x\end{smallmatrix}\bigr) = \bigl(\begin{smallmatrix}1 & y - 2 \\ 8 & 8\end{smallmatrix}\bigr)$ then the values of x and y respectively are<br>
Question 58 :
If the matrix is a square matrix and it contains $36$ elements, then the order of the matrix is:
Question 59 :
If $A=\begin{pmatrix} 7 & 2 \\ 1 & 3 \end{pmatrix}$ and $A+B=\begin{pmatrix} -1 & 0 \\ 2 & -4 \end{pmatrix}$ then matrix $B=$?
Question 60 :
If the order of matrices $A$ and $B$ are $3 \times 2$ and $2 \times 1 $ respectively, then find the order of matrix (if possible) $AB$
Question 61 :
If A is square matrix such that $A (Adj A)=\left( \begin{matrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{matrix} \right) $ then det (Adj A)=
Question 62 :
If $A$ and $B$ are two matrices of same order, then $A + B$ is equal to
Question 63 :
Unit matrix is a diagonal matrix in which all the diagonal elements are unity. Unit matrix of order 'n' is denoted by $I_n(or \ I)$ i.e. $A = [a_{ij}]_n$ is a  unit matrix when $a_{ij} = 0$ for $i \neq j \ and \ a_{ij} = 1$
Question 64 :
If A is a square matrix of order n, then adj (adj A ) is equal to
Question 65 :
Let $a$ denote the element of the ${i^{th}}$ row and ${j^{th}}$ column in a $3 \times 3$ matrix and let ${a_{ij}} = \, - {a_{ji}}$ for every i and j then this matrix is an -
Question 66 :
If $A$ is a matrix of order $m\times n$ and $B$ is a matrix such that $AB'$ and $B'A$ are both defined, the order of the matrix $B$ is
Question 67 :
If AB = 0, then for the matrices $A=\begin{bmatrix} { \cos }^{ 2 }\theta  & \cos\theta \sin\theta  \\ \cos\theta \sin\theta  & { \sin }^{ 2 }\theta  \end{bmatrix}\ and \ B=\begin{bmatrix} { \cos }^{ 2 }\phi  & \cos\phi \sin\phi  \\ \cos\phi \sin\phi  & { \sin }^{ 2 }\phi  \end{bmatrix}, \theta - \phi$ is
Question 68 :
The matrix A satisfies the matrix equation if $A=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$<br/>
Question 69 :
lf $\mathrm{A}=[\mathrm{a}_{\mathrm{i}\mathrm{j}}]$ is a scalar matrix of order  $n\times n$ such that $\mathrm{a}_{\mathrm{i}\mathrm{j}}=\mathrm{k}$ for all $\mathrm{i}=j$, then trace of $\mathrm{A}=$<br/>
Question 70 :
Let $A  \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}  $. If $u_{1}$ and $ u_{2}$ are column matrix such that $ A{ u }_{ 1 } \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}  $ and $ A{ u }_{ 2 } \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}  $ then $u_{1}+ u_{2}$ is equal to
Question 71 :
<p>The rank of the matrix</p>$\left[ {\begin{array}{*{20}{c}}<br> 1&2&3 \\ <br> \lambda &2&4 \\ <br> 2&{ - 3}&1 <br>\end{array}} \right]$ is 3 if<br>
Question 72 :
Let $\quad A=\begin{pmatrix} { x }^{ 2 } & 6 & 8 \\ 3 & { y }^{ 2 } & 9 \\ 4 & 5 & { z }^{ 2 } \end{pmatrix}$ and $B=\begin{pmatrix} 2x & 3 & 5 \\ 2 & 2y & 6 \\ 1 & 4 & 2z-3 \end{pmatrix}$ be two matrices and if $Tr(A)=Tr(B)$, then the value of $(x+y+z)$ is equal to<br/>(Note: $Tr(P)$ denotes trace of matrix $P$)
Question 73 :
If $\left[\begin{array}{ll}<br/>x+3 & 2y+x\\<br/>z-1 & 4a-z<br/>\end{array}\right]=\left[\begin{array}{ll}<br/>0 & -7\\<br/>3 & 2a<br/>\end{array}\right],$ then $(x+y+z+a)$ is:
Question 74 :
If $A$ is a square matrix of order $3$ such that $A^{2} + A + 4I = 0$, where $0$ is the zero matrix and $I$ is the unit matrix of order $3$, then
Question 75 :
Given $\displaystyle A=\begin{bmatrix}2 &-1 \\2  &0 \end{bmatrix},B=\begin{bmatrix}-3 &2 \\4  &0 \end{bmatrix}\:and\:C=\begin{bmatrix}2 &0 \\0  &2 \end{bmatrix},$ find the matrix $X$ such that<br/> $A+X=2B+C$
Question 76 :
If $A = \begin{bmatrix}1& 3 & 1\\ 2& 1 & -1\\ 3& 0 & 1\end{bmatrix}$, then rank $(A)$ is equal to<br>
Question 77 :
If $m\begin{bmatrix} -3 & 4 \end{bmatrix}+n\begin{bmatrix} 4 & -3 \end{bmatrix}=\begin{bmatrix} 10 & -11 \end{bmatrix}$ then $3m+7n=$
Question 78 :
Assertion: The possible dimension of a matrix consisting $27$ elements is $4.$
Reason: The number of ways of expressing $27$ as a product of two positive integers is $4.$
Question 80 :
If $A$ is a matrix of order $m\times n$ and $B$ is a matrix such that $AB^{T}$ and $B^{T}A$ are both defined, then the order of matrix $B$ is
Question 81 :
$B=A+A^{2}+A^{3}+A^{4}$ <br/>If order of $A$ is $3$ then order of $B$ is 
Question 82 :
A matrix has $16$ elements Which of the following can be the order of the matrix?
Question 83 :
For $3\times 3$ matrices $A$ and $B$, if $\left| B \right| =1$ and $A=2B$ then find $\left| A \right|$.
Question 84 :
If $A =\begin{bmatrix}1 &2 \\ 3 & 4\\ 5 & 6\end{bmatrix}$ and $B =\begin{bmatrix} - 3& -2 \\ 1 & -5\\ 4 & 3\end{bmatrix}$, then find $D =\begin{bmatrix}p &q \\ r & s\\ t & u\end{bmatrix}$ such that $A + B - D = O$
Question 85 :
If $A$ and $B$ are two matrices of order $3\times m$ and $3\times n$ respectively and $m = n$, then the order of $5A - 2B$ is
Question 86 :
If $A$ and $B$ are two matrices of the order $3\times m$ and $3\times n$, respectively and $m=n$, then order of matrix $(5A-2B)$ is
Question 87 :
If $A$ and $B$ are two matrices such that $A+B$ and $AB$ are both defined, then
Question 88 :
Let $C_{k}=^{n}C_{k}$ for $0\le k \le n$ and ${ A }_{ k }=\begin{bmatrix} { C }_{ k-1 }^{ 2 } & 0 \\ 0 & { C }_{ k }^{ 2 } \end{bmatrix}$ for $k\ge 1$ and ${ A }_{ 1 }+{ A }_{ 2 }+....{ A }_{ n }=\begin{bmatrix} { k }_{ 1 } & 0 \\ 0 & { k }_{ 2 } \end{bmatrix}$ then
Question 89 :
If $n = p$, then the order of the matrix $7X - 5Z$ is:<br>
Question 90 :
If $A = \left[ \begin{array}{l}4\,\,\,\,\,1\,\,\,\,\,\,0\\1\,\, - 2\,\,\,\,\,2\end{array} \right]$,$B = \left[ \begin{array}{l}2\,\,\,\,\,0\,\,\,\, - 1\\3\,\,\,\,\,1\,\,\,\,\,\,\,\,4\end{array} \right]$, $C = \left[ \begin{array}{l}\,\,\,1\\\,\,\,2\\ - 1\end{array} \right]$ and $\left( {3B - 2A} \right)C + 2X = 0$ then $X$=
Question 91 :
The order of [x, y, z]$\begin{bmatrix}a & h & g\\ h & b & f\\ g & f & c\end{bmatrix}$ <br> $\begin{bmatrix}x\\ y \\z \end{bmatrix}$ is
Question 92 :
If $\begin{bmatrix} x & 0 \\ 1 & y \end{bmatrix}-\begin{bmatrix} 2 & -4 \\ -3 & -4 \end{bmatrix}=\begin{bmatrix} 3 & 5 \\ 6 & 3 \end{bmatrix}-\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$ then x=?,y=?
Question 93 :
If $2 \begin{bmatrix} 1& 3\\ 0 & x\end{bmatrix} + \begin{bmatrix} y& 0\\ 1 & 2\end{bmatrix} = \begin{bmatrix}5 & 6\\ 1 & 8\end{bmatrix}$, then the value of x and y are
Question 94 :
Given, matrix $\displaystyle A=\begin{bmatrix}3\\2 <br/>\end{bmatrix}\:and\:B=\begin{bmatrix}-2\\-1 <br/>\end{bmatrix},$ find the matrix X such that $X - A = B$
Question 95 :
If $\begin{bmatrix} i&0 \\3 &-i \end{bmatrix}+X=\begin{bmatrix} i&2 \\3 &4+i\end{bmatrix} - X$, then $X$ is equal to<br/>
Question 96 :
<b>If $A={ \left[ { a }_{ ij } \right] }_{ 2\times 2 }$where ${ a }_{ 15 }=\begin{cases} i+j \\ { i }^{ 2 }-2j \end{cases}\begin{matrix} i\neq j \\ i=j \end{matrix}$ then ${ A }^{ -1 }=$</b>
Question 97 :
If $A$ is a square matrix of order $n\times n$, then adj(adj A) is equal to
Question 98 :
If$\displaystyle a_{ij}=0\left ( i\neq j \right )$ and$\displaystyle a_{ij}=1\left ( i= j \right )$ then the matrix A=$\displaystyle \left [ a_{ij} \right ]_{n\times n}$ is a _____ matrix
Question 99 :
If a matrix $P$ has $8$ elements then how many different values the order of the matrix can take?
Question 100 :
If $A =\displaystyle \begin{bmatrix} -1 & 0 &0  \\ 0 & x & 0 \\ 0 & 0 & m \end{bmatrix}$ is a scalar matrix then $x+m=$
Question 101 :
$\left[ \begin{matrix} x \\ 3 \end{matrix}\begin{matrix} 6 \\ 2x \end{matrix} \right]$ is a singular matrix, then $x$ is equal to
Question 102 :
Consider $A$ and $B$ two square matrices of same order. Select the correct alternative.
Question 103 :
If $A = \bigl(\begin{bmatrix}7 &2 \\ 1 & 3\end{bmatrix}\bigr)$ and $A + B = \bigl(\begin{bmatrix} -1& 0\\ 2 & -4\end{bmatrix}\bigr)$, then the matrix B =<br/>
Question 104 :
A is of order $m \times n$ and B is of order $p \times q$, addition of A and B is possible only if<br>
Question 105 :
If $A = \dfrac {1}{\pi} \begin{bmatrix}\sin^{-1}(\pi x) & \tan^{-1} \left (\dfrac {\pi}{\pi}\right )\\ \sin^{-1} \left (\dfrac {x}{\pi}\right ) &\cot^{-1} (\pi x)\end{bmatrix}, B =\dfrac {1}{\pi} \begin{bmatrix}-\cos^{-1}(\pi x) &\tan^{-1} \left (\dfrac {x}{\pi}\right ) \\ \sin^{-1} \left (\dfrac {x}{\pi}\right ) & -\tan^{-1} (\pi x)\end{bmatrix}$, then $A - B$ is equal to<br/>
Question 106 :
Out of the following matrices, choose that matrix which is a scalar matrix.
Question 107 :
Let $C_k =$ $^nC_k$ for $0\leq k\leq n$ and<br>$A_k=\begin{bmatrix}C_{k-1}^2&0 \\0 &C_k^2 \end{bmatrix}$ for $k\geq 1$, and $A_1+A_2+ ... + A_n=\begin{bmatrix}k_1 &0 \\0 &k_2\end{bmatrix}$, then<br>
Question 108 :
When a row matrix is multiplied by a column matrix both having the same number of elements, the resulting matrix formed is a ___?
Question 109 :
If the number of elements in a matrix is $60$ then how many different order of matrix are possible 
Question 110 :
If $\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix}$ = $(A+Bx)(x-A)^2$,<br>then the ordered pair $(A , B)$ is equal to:
Question 111 :
If $A = \bigl(\begin{smallmatrix}1 & -2\\ -3 & 4\end{smallmatrix}\bigr)$ and $A + B = O$, then B is<br>
Question 112 :
$\displaystyle \begin{vmatrix} 1 & a & {a}^{2}-bc \\ 1 & b & {b}^{2}-ca \\ 1 & c & {c}^{2}-ab \end{vmatrix}$=?
Question 113 :
Let $A = \begin{bmatrix} -2 & 7 & \sqrt{ 3}  \\ 0 & 0 & -2 \\ 0 & 2 & 0 \end{bmatrix} $  and $A^4 = \lambda$. I, then $\lambda $ is
Question 114 :
If $A$ is $2\times 3$ matrix and $AB$ is a $2\times 5$ matrix, then $B$ must be a
Question 115 :
Let $n\ge 2$ be an integer,<br/>$A=\begin{bmatrix} \cos { \left( { \dfrac{2\pi}n} \right)  }  & \sin { \left(\dfrac{2\pi}n \right)  }  & 0 \\ -\sin { \left( \dfrac{2\pi}n \right)  }  & \cos { \left(\dfrac{2\pi}n \right)  }  & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $I$ is the identity matrix of order $3$., then following of which is correct
Question 116 :
If A =$\begin{bmatrix}1 & 2 \\ 3 & 4 \end{bmatrix}$, B =$\begin{bmatrix}2 & 3 \\ 4 & 5 \end{bmatrix}$, and 4A - 3B + C = 0, then C =