Question 1 :
If $A$ and $B$ are skew symmetric matrices of order n then $A+B$ is<br>
Question 3 :
The inverse of $\begin{bmatrix} 1 & a & b \\ 0 & x & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is $\begin{bmatrix} 1 & -a & -b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then $x=$
Question 4 :
If $A$ is skew-symmetric matrix and $n$ is odd positive integer, then $A^n$ is<br>
Question 5 :
If $A=([1\ \  2\ \  3\ \  4]$ and $AB = [3 \ \ 4\ \  -1$] then the order of<br/>matrix B is 
Question 6 :
If A and B are two matrices such that A + B and<br>AB are both defined then
Question 8 :
Let M and N be two even order non-singular skew symmetric matrices such that MN $=$ NM. If $P^T$ denotes the transpose of P, then $M^2N^2(M^TN)^{-1}$ $(MN^{-1})^T$ is equal to.
Question 9 :
$A=\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ then ${A}^{-1}+(A-aI)(A-cI)=$
Question 12 :
If the matrix $AB$ is a zero matrix, then which one of the following is correct?
Question 13 :
If $A$ is symmetric as well as skew-symmetric matrix, then $A$ is<br>
Question 14 :
Least number of changes for the expression $ax^{2} + bxy + cy^{2} + dx + ey + f$ to be symmetric in x and y is
Question 15 :
If $A$ is any matrix, then the product $AA$ is defined only when A is a matrix of order $m \times n$ where : <br/>
Question 16 :
If $\begin{bmatrix} x & y \\ u & v \end{bmatrix}$ is symmetric matrix, then
Question 17 :
If $A=\begin{bmatrix} 3 & x \\ y & 0 \end{bmatrix}$ and $A={A}^{T}$ then
Question 18 :
If $A$ is matrix of order $\displaystyle m\times n$ and $B$ is a matrix of order $\displaystyle n\times p$, then the order of $AB$ is 
Question 19 :
$A=\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta\end{bmatrix}$ and $AB=BA=I$, then B is equal to
Question 20 :
A= $\begin{bmatrix} 1&2&3\\4&5&6\\7&8&9\end{bmatrix}$. B is matrix obtained by subtracting $4 \ times \ 1^{st}\ row\ from \ 2^{nd} \ row$ of A. Find matrix B
Question 22 :
If $A=\begin{bmatrix}1&1&-1\\2&-3&4\\3&-2&3\end{bmatrix}$ and $B=\begin{bmatrix}-1&-2&-1\\6&12&6\\5&10&5\end{bmatrix}$, then which of the following is/are correct?<br>1. A and B commute.<br>2. AB is null matrix.<br>Select the correct answer using the code given below :
Question 23 :
If A and B are square matrices of same order, then which of the following is correct -
Question 24 :
<b>If $a,b,c$ and $d$ are real numbers such that and if $A=\left| \begin{matrix} a+ib & c+id \\ -c+id & a-ib \end{matrix} \right| $ then ${ A }^{ -1 }=$</b>
Question 25 :
If $A$ and $B$ are two non-singular matrices and both are symmetric and commute each other, then
Question 26 :
If $A$ is a skew-symmetric matrix of order $n$ and $C$ is a column matrix of order $n\times 1$ then $C^TAC$ is
Question 27 :
If $ A$ is a $ 3X3$ non-singular matrix such that $ AA'=A'A$ and $ B=A^{-1}A'$, then $ BB'$ equals to
Question 28 :
Let 'M be a $3\times 3$ matrix such that [0 1 2] M = [1 0 0 ] and [ 3 4 5 ] M = [0 1 0 ] then [6 7 8] is equal to
Question 29 :
If $A = \bigl(\begin{bmatrix}7 &2 \\ 1 & 3\end{bmatrix}\bigr)$ and $A + B = \bigl(\begin{bmatrix} -1& 0\\ 2 & -4\end{bmatrix}\bigr)$, then the matrix B =<br/>