Question 1 :
When ${ x }^{ 2 }-2x+k$ divided the polynomial ${ x }^{ 2 }-{ 6x }^{ 3 }+16{ x }^{ 2 }-25x+10$ the reminder is (x+a), the value of is
Question 2 :
Calculate $\left( 6{ p }^{ 2 }+p-12 \right) \div \left( 2p+3 \right) $.
Question 4 :
What is the remainder when $(x^4+1) $ is divided by $(x-2)?$
Question 6 :
One of the factors of $(-25x^2 -1) + (1 + 5x)^2$ is
Question 8 :
If $ax^2+2a^2x+b^3$ is divisible by $x+a$, then what is the relation between $'a'$ and $'b'$ is possible?
Question 9 :
Let $r(x)$ be the remainder when the polynomial $x^{135} + x^{125} - x^{115} + x^{5} + 1$ is divided by $x^{3} - x$. Then
Question 11 :
Evaluate :$\displaystyle \frac { 50xyz\left( x+y \right) \left( y+z \right) \left( z+x \right) }{ 100xy\left( x+y \right) \left( y+z \right) }$
Question 12 :
When $p (x)$ is divided by $ax - b$ then the remainder is :<br>
Question 13 :
$\displaystyle \left ( 1-a \right )\left ( 1+a+a^{2} \right )+\left ( 1+a \right )\left ( 1-a+a^{2} \right )$ is equal to
Question 15 :
If $p(x)$ and $g(x)$ are any two polynomials with $g(x)\neq 0$, then we can find polynomial $q(x)$ and $r(x)$ such that $p(x) = q(x) g(x) + r(x)$ where<br/>
Question 17 :
What must be added to $f(x)=4x^4+2x^3+2x^2+x-1$ so that the resulting polynomial is divisible by $g(x)=x^2+2x-3$<br>
Question 18 :
Determine all the zeros of $x^3+5x^2-2x-10$ if two of its zeros are $\sqrt 2$ and $-\sqrt 2$<br>
Question 20 :
The simplified value of the experession$\displaystyle \left ( a+b-c \right )^{2}+2\left ( a+b-c \right )\left ( a-b+c \right )+\left ( a-b+c \right )^{2}$ is
Question 21 :
The value of $k$ for which $x+k$ is a factor of $x^3 + kx^2 - 2x = k = 4$ is
Question 22 :
In the real number system, the equation<br>$\sqrt { x+3-4\sqrt { x-1 } } +\sqrt { x+8-6\sqrt { x-1 } } =1$
Question 23 :
When N is divided by 4, the remainder is 3. What is the remainder when 2N is divided by 4?<br/>
Question 24 :
Factorise : ${ (ax+by) }^{ 2 }+{ (2bx-2ay) }^{ 2 }-6abxy$
Question 25 :
If $\displaystyle 2 \left ( x^{2} + 1 \right ) = 5x$, find $\displaystyle x - \dfrac{1}{x}$<br/>
Question 26 :
State whether the following statement is true or not:If $\dfrac { a }{ b } +\dfrac { b }{ a } =-1$, then ${ a }^{ 3 }-{ b }^{ 3 }=0$.
Question 29 :
Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial.$t^2-3, 2t^4+3t^3-2t^2-9t-12$<br/>
Question 30 :
The value of $m$ for which $x^3 - 2mx^2 + 16$ is divisible by $(x + 2)$, is<br/>
Question 31 :
The value of $\displaystyle \left ( 5x-3y \right )^{2}-\left ( 5x+3y \right )^{2}$, when $\displaystyle x=-1$ and $y=\sqrt{\cfrac{1}{25}}$ is
Question 34 :
If $a = \dfrac{1}{3 - 2\sqrt{2}}, b = \dfrac{1}{3 + 2\sqrt{2}}$, then the value of $a^{3} + b^{3}$ is<br/>
Question 35 :
If $(x+1)$ and $(x-2)$ are the factors of the expression $(2x^3-px^2+x+q)$, then the values of $p$ and $q$ are given by:
Question 36 :
When $3x^{3} + 2x^{2} + 2x + k$ is divided by $x + 2$, the remainder is $4$. Calculate the value of $k$.
Question 38 :
If $x^4 \, + \, 2x^3 \, - \, 3x^2 \, + \, x \, - \, 1$ is divided by $x - 2$. then the remainder is
Question 39 :
Find the number of zeros in the end in product $5 ^ { 6 } \cdot 6 ^ { 7 } .7 ^ { 8 } \cdot 8 ^ { 9 } \dots 30 ^ { 31 }.$
Question 40 :
If $\displaystyle \left ( x+2 \right )$ is a factor of the polynomial $\displaystyle f\left ( x \right )= x^{2}+ax+2b$ and $\displaystyle a+b=4$, then the value of $a$ and $b$ are-
Question 41 :
(64x$^3$ + y$^3$) $\div$ (16x$^2$ - 4xy + y$^2$) is equal to
Question 42 :
Divide $\displaystyle 8\left( 3x+4 \right) \left( 8x+9 \right) $ by $\displaystyle \left( 3x+4 \right) $
Question 43 :
If ${ x }^{ 3 }-{ ax }^{ 2 }+bx-6\quad is\quad exactly\quad divisible\quad by\quad { x }^{ 2 }-5x+6.\quad then\quad \frac { a }{ b } \quad is$
Question 44 :
Workout the following divisions<br/>$a(a + 1) (a + 2) (a + 3) \div a(a + 3)$
Question 49 :
If $2x+ky+z$ is a factor of $\displaystyle 9y^{2}-z^{2}-2xz+6xy $, then the value of k is equal to
Question 50 :
The value of $k$ for which $(x - 1)$ is a factor of $x^{3} - kx^{2} + 11x - 6$ is<br/>