Question 1 :
(1 + tan θ + sec θ) (1 + cot θ – cosec θ) = ____
Question 5 :
Is this equality correct ?$(cosec A – sin A) (sec A – cos A)= \frac{1}{tan A +cot A}$
Question 6 :
Is $\frac{cos A – sin A + 1}{cos A + sin A - 1}= cosecA + cotA$?
Question 7 :
$\cot A$ is the product of cot and A. True or False?
Question 8 :
$\cos 38^{\circ} \cos 52^{\circ} – \sin 38^{\circ} \sin 52^{\circ} \ne 0$. TRUE or FALSE?
Question 10 :
In $\Delta ACB$, right-angled at C, in which AB = 29 units, BC = 21 units and $\angle ABC = \theta$, find the value of $\cos^2\theta-sin^2\theta$
Question 11 :
In $\Delta ABC$, right-angled at B, AB = 24 cm, BC = 7 cm. Determine $\sin C$ and $cos C$ respectively.
Question 13 :
$\cos A$ is the abbreviation used for the cosecant of angle A. True or False?
Question 14 :
If $\alpha + \beta = 90^\circ$, then find the value of $\sqrt{\cos\alpha\ \operatorname{cosec}\beta-\cos\alpha\ \sin\beta}$.
Question 15 :
Can all the other trigonometric ratios of ∠ A be written in terms of sec A?
Question 16 :
In triangle ABC, right-angled at B, if $\tan A = \frac{1}{\sqrt3}$, then find the value of $\sin A \cos C +\cos A\sin C$
Question 17 :
Is $\frac{cot A - cos A}{cot A + cos A} = \frac{cosec A-1}{cosec A +1}$?
Question 18 :
Given $\tan A=\frac{4}{3}$, then what is the value of $\sin A$?
Question 21 :
In $\Delta ABC$, right-angled at B, AB = 24 cm, BC = 7 cm. Determine $\sin A$ and $cos A$ respectively.
Question 22 :
If $\cot \theta=\frac{7}{8}$, then find the value of $\dfrac{\left( 1+\sin \theta \right) \left( 1-\sin \theta \right) }{\left( 1+\cos \theta \right) \left( 1-\cos \theta \right) }$
Question 24 :
In a right triangle ABC, right-angled at B, if $\tan A = 1$, is $2 sin A cos A \ne 1$ ?
Question 25 :
<img style='object-fit:contain' src='https://teachmint.storage.googleapis.com/question_assets/cbse_ncert/61b19bda273b230584979a2d.PNG' />
In the above figure, find $\tan P – \cot R$
Question 27 :
Given $\tan A=\frac{4}{3}$, then what is the value of $\cos A$?
Question 28 :
Express $\sin 67^{\circ} + \cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$.
Question 31 :
In $\Delta PQR$, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine $\angle QPR$ and $\angle PRQ$ respectively.
Question 35 :
If A, B and C are interior angles of a triangle ABC, then $\sin\begin{pmatrix}\frac{B+C}{2}\end{pmatrix}\ne\cos\begin{pmatrix}\frac{A}{2}\end{pmatrix}$. TRUE or FALSE ?
Question 37 :
Is $(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2 A + cot^2 A$?
Question 38 :
$\sin 2A = 2 \sin A$ is true when A is equal to
Question 40 :
If $\tan 2A = \cot \begin{pmatrix}A – 18^{\circ}\end{pmatrix}$, where 2A is an acute angle, find the value of A.
Question 41 :
The value of $\sin \theta$ increases as $\theta$ increases. True or False?
Question 44 :
Given $\sec \theta = \frac{13}{12}$ calculate $cosec\ \theta$ and $\cot \theta$ respectively.
Question 46 :
In $\Delta ABC$, right-angled at B, AB = 5 cm and $\angle ACB = 30^{\circ}$. Determine the lengths of the sides BC and AC respectively.
Question 47 :
Evaluate : $sin 25° cos 65° + cos 25° sin 65°$
Question 48 :
Can the trigonometric ratios sin A, sec A and tan A be expressed in terms of cot A?
Question 49 :
Is this equality correct ? $\frac{tan A}{1- cotA} + \frac{cotA}{1-tanA}= 1+ secAcosecA$