Question 1 :
If $\displaystyle  \cos A+\cos ^2A=1$ then the value of $\displaystyle  \sin ^{2}A+\sin ^{4}A$ is
Question 3 :
The angle of elevation and angle of depression both are measured with
Question 4 :
The value of $\sqrt { 3 } \sin { x } +\cos { x } $ is max. when $x$ is equal to
Question 5 :
If $3\sin\theta + 5 \cos\theta =5$, then the value of $5\sin\theta -3 \cos\theta $ are 
Question 7 :
If $\sin \theta + \cos\theta = 1$, then what is the value of $\sin\theta \cos\theta$?
Question 8 :
Find the value of $\sin^3\left( 1099\pi -\dfrac { \pi  }{ 6 }  \right) +\cos^3\left( 50\pi -\dfrac { \pi  }{ 3 }  \right) $
Question 9 :
If$\displaystyle \cot A=\frac{12}{5}$ then the value of$\displaystyle \left ( \sin A+\cos A \right )$ $\displaystyle \times cosec$ $\displaystyle A$ is
Question 10 :
The solution of $(2 cosx-1)(3+2 cosx)=0$ in the interval $0 \leq \theta \leq 2\pi$ is-
Question 11 :
If $A+B+C=\dfrac { 3\pi }{ 2 } $, then $cos2A+cos2B+cos2C$ is equal to
Question 12 :
If $\sec{2A}=\csc{(A-42^\circ)}$ where $2A$ is acute angle then value of $A$ is
Question 14 :
Eliminate $\theta$ and find a relation in x, y, a and b for the following question.<br/>If $x = a sec \theta$ and $y = a tan \theta$, find the value of $x^2 - y^2$.
Question 15 :
$\tan \theta$ increases as $\theta$ increases.<br/>If true then enter $1$ and if false then enter $0$.<br/>
Question 16 :
$\left( \dfrac { cosA+cosB }{ sinA-sinB }  \right) ^{ 2014 }+\left( \cfrac { sinA+sinB }{ cosA-cosB }  \right) ^{ 2014 }=...........$
Question 17 :
find whether ${ \left( \sin { \theta  } +co\sec { \theta  }  \right)  }^{ 2 }+{ \left( \cos { \theta  } +\sec { \theta  }  \right)  }^{ 2 }=7+\tan ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } $ is true or false.
Question 18 :
If $\displaystyle \tan { \theta  } =\frac { 1 }{ 2 } $ and $\displaystyle \tan { \phi  } =\frac { 1 }{ 3 } $, then the value of $\displaystyle \theta +\phi $ is:
Question 20 :
If $ \alpha \epsilon \left[ \frac { \pi  }{ 2 } ,\pi  \right] $ then the value of $\sqrt { 1+sin\alpha  } -\sqrt { 1-sin\alpha  } $ is equal to
Question 21 :
Value of ${ cos }^{ 2 }{ 135 }^{ \circ  }$
Question 24 :
Simplest form of $\displaystyle \dfrac{1}{\sqrt{2 + \sqrt{2 + \sqrt{2 + 2 cos 4x}}}}$ is
Question 25 :
Maximum value of the expression $\begin{vmatrix} 1+{\sin}^{2}x & {\cos}^{2}x & 4\sin2x \\ {\sin}^{2}x & 1+{\cos}^{2}x & 4\sin2x \\ {\sin}^{2}x & {\cos}^{2}x & 1+4\sin2x \end{vmatrix}=$
Question 26 :
If $\theta$ increases from $0^0$ to $90^o$, then the value of $\cos\theta$: <br/>
Question 27 :
Given $tan \theta = 1$, which of the following is not equal to tan $\theta$?
Question 28 :
Solve : $\dfrac { 2tan{ 30 }^{ \circ  } }{ 1+{ tan }^{ 2 }{ 30 }^{ \circ  } } $
Question 29 :
Select and wire the correct answer from the given alternatives. <br/>$\cos \left(\dfrac {3\pi}{2}+\theta \right)=$ ____
Question 30 :
Express$\displaystyle \cos { { 79 }^{ o } } +\sec { { 79 }^{ o } }$ in terms of angles between$\displaystyle { 0 }^{ o }$ and$\displaystyle { 45 }^{ o }$
Question 31 :
Given $\cos \theta = \dfrac{\sqrt3}{2}$, which of the following are the possible values of  $\sin 2 \theta$?
Question 34 :
The given expression is $\displaystyle \sin { \theta  } \cos { \left( { 90 }^{ o }-\theta  \right)  } +\cos { \theta  } \sin { \left( { 90 }^{ o }-\theta  \right)  } +4 $ equal to :<br/>
Question 36 :
As value of $x$ increases from $0$ to $\cfrac{\pi}{2}$, the value of $\cos {x}$:
Question 37 :
IF A+B+C=$ \displaystyle 180^{\circ}  $ ,then $  tan A+tanB+tanC $ is equal to
Question 39 :
If $\displaystyle x=y\sin \theta \cos \phi ,y=\gamma \sin \theta \sin \phi ,z=\gamma \cos \theta $. Eliminate  $\displaystyle \theta $ and  $\displaystyle \phi $
Question 40 :
Choose and write the correct alternative.<br>If $3 \sin \theta = 4 \cos \theta$ then $\cot \theta = ?$<br>
Question 44 :
IF $ \displaystyle \tan \theta =\sqrt{2}    $ , then the value of $ \displaystyle \theta     $ is 
Question 45 :
The expression$ \displaystyle \left (\tan \Theta +sec\Theta \right )^{2} $ is equal to
Question 48 :
The value of $[\dfrac{\tan 30^{o}.\sin 60^{o}.\csc 30^{o}}{\sec 0^{o}.\cot 60^{o}.\cos 30^{o}}]^{4}$ is equal to
Question 49 :
Select and wire the correct answer from the given alternatives. <br/>$\cos \left(\dfrac {3\pi}{2}+\theta \right)=$ ____
Question 50 :
Which of the following is equal to $\sin x \sec x$?