Question 1 :
The radius of a circular wheel is $1.75\ m$. The number of revolutions that it will make in covering $11\ kms$ is:
Question 2 :
If an arc of a circle subtends an angle of<b></b>$ \displaystyle x^{\circ} $ at the centre then the length of the arc will be equal to - (Given radius of the circle=r)
Question 3 :
The area of a sector is 1/18th of the area of the circle The sectorial angle is
Question 4 :
The diameter of a wheel of a cycle is 21 cm How far will it go in 28 complete revolutions?
Question 6 :
A coin is tossed $400$ times and the data of outcomes is below:<span class="wysiwyg-font-size-medium"> <span class="wysiwyg-font-size-medium"><br/><table class="wysiwyg-table"><tbody><tr><td><span class="wysiwyg-font-size-medium"><br/> <p class="wysiwyg-text-align-center">Outcomes </p></td><td><span class="wysiwyg-font-size-medium"><br/> <p class="wysiwyg-text-align-center">$H$</p></td><td><span class="wysiwyg-font-size-medium"><br/> <p class="wysiwyg-text-align-center">$T$</p></td></tr><tr><td><span class="wysiwyg-font-size-medium"><br/> <p class="wysiwyg-text-align-center">Frequency</p></td><td><span class="wysiwyg-font-size-medium"><br/> <p class="wysiwyg-text-align-center">$280$</p></td><td><span class="wysiwyg-font-size-medium"><br/> <p class="wysiwyg-text-align-center">$120$</p></td></tr></tbody></table><p><br/></p><p>Find:</p><p>(i) $P(H)$, i.e., probability of getting head</p><p>(ii) $P (T)$, i.e., probability of getting tail. </p><p>(iii) The value of $P (H) + P (T)$.</p>
Question 7 :
A game of chance consists of spinning an arrow which is equally likely to come to rest pointing to one of the number between 1 to 15. What is the probability that it will point to an odd number.
Question 8 :
The probability of guessing the correct answer to a certain test is $\displaystyle\frac{x}{2}$. If the probability of not guessing the correct answer to this questions is $\displaystyle\frac{2}{3}$, then $x$ is equal to ______________.
Question 9 :
A bag contains 5 blue and 4 black balls. Three balls are drawn at random. What is the probability that 2 are blueand 1 is black?
Question 10 :
The probability of an event happening and the probability of the same event not happening (or the complement) must be a <br/>
Question 11 :
As value of $x$ increases from $0$ to $\cfrac{\pi}{2}$, the value of $\cos {x}$:
Question 15 :
Solve : $\dfrac { 2tan{ 30 }^{ \circ  } }{ 1+{ tan }^{ 2 }{ 30 }^{ \circ  } } $
Question 16 :
If $3\sin\theta + 5 \cos\theta =5$, then the value of $5\sin\theta -3 \cos\theta $ are 
Question 19 :
$\tan \theta$ increases as $\theta$ increases.<br/>If true then enter $1$ and if false then enter $0$.<br/>
Question 20 :
Given $tan \theta = 1$, which of the following is not equal to tan $\theta$?
Question 21 :
If $sin({ 90 }^{ 0 }-\theta )=\dfrac { 3 }{ 7 } $, then $cos\theta $
Question 22 :
Simplest form of $\displaystyle \dfrac{1}{\sqrt{2 + \sqrt{2 + \sqrt{2 + 2 cos 4x}}}}$ is
Question 23 :
Given $\cos \theta = \dfrac{\sqrt3}{2}$, which of the following are the possible values of  $\sin 2 \theta$?
Question 25 :
Find the value of $ \displaystyle  \theta , cos\theta  \sqrt{\sec ^{2}\theta -1}     = 0$
Question 27 :
If $\displaystyle x=y\sin \theta \cos \phi ,y=\gamma \sin \theta \sin \phi ,z=\gamma \cos \theta $. Eliminate  $\displaystyle \theta $ and  $\displaystyle \phi $
Question 28 :
If $sec\theta -tan\theta =\dfrac{a}{b},$ then the value of $tan\theta $ is
Question 30 :
The expression$ \displaystyle \left (\tan \Theta +sec\Theta \right )^{2} $ is equal to