Question 1 :
When x<sup>3</sup> – 3x<sup>2</sup> + 5x – 7 is divided by x – 2,then the remainder is<br/>
Question 4 :
In an A.P., if a = 3.5, d = 0, n = 101, then a<sub>n</sub> will be<br/>
Question 5 :
The mean proportional between {tex} \frac { 1 }{ 2 } {/tex} and 128 is<br/>
Question 6 :
The reflection of the point (-3, 0) in the origin is the point<br/>
Question 7 :
If the first term of an A.P. is -5 and the common difference is 2, then the sum of its first 6 terms is<br/>
Question 8 :
The slope of a line parallel to the line 2x + 3y – 7 = 0 is<br/>
Question 9 :
If x ∈ W, then the solution set of the inequation 5 – 4x ≤ 2 – 3x is<br/>
Question 10 :
If {tex}\begin{bmatrix} x+3 &4 \\ y-4 & x+y \end{bmatrix}=\begin{bmatrix} 5 & 4 \\ 3 & 9 \end{bmatrix} {/tex} then the values of x and y are<br/>
Question 11 :
The 4th term from the end of the A.P. -11, -8, -5, …, 49 is<br/>
Question 12 :
If the common difference of an A.P. is 5, then a<sub>18</sub> – a<sub>13</sub> is<br/>
Question 13 :
In an A.P., if a = 1, a<sub>n</sub> = 20 and S<sub>n</sub> = 399, then n is<br/>
Question 14 :
In an A.P., if a<sub>18</sub> – a<sub>14</sub> = 32 then the common difference is<br/>
Question 15 :
If the last term of the A.P. 5, 3, 1, -1,… is -41, then the A.P. consists of<br/>
Question 16 :
In an A.P., if d = -4, n = 7, a<sub>n</sub> = 4, then a is<br/>
Question 17 :
If A = [a<sub>ij</sub>]<sub>2×2</sub> where a<sub>ij</sub> = i + j, then A is equal to<br/>
Question 18 :
A ratio equivalent to the ratio {tex} \frac { 2 }{ 3 } {/tex} : {tex} \frac { 5 }{ 7 } {/tex} is<br/>
Question 19 :
The 11th term of the A.P. -3, {tex}– \frac { 1 }{ 2 } {/tex}, 2, … is<br/>
Question 20 :
If {tex}x\left[ \begin{matrix} 2 \\ 3 \end{matrix} \right] +y\left[ \begin{matrix} -1 \\ 0 \end{matrix} \right] =\left[ \begin{matrix} 10 \\ 6 \end{matrix} \right] {/tex} then the values of x and y are<br/>
Question 21 :
Find {tex} \mathrm a {/tex} and {tex} \mathrm b {/tex} in order that {tex}\mathrm { \left(x^{3}-10 x^{2}\right)+(a x+b) }{/tex} may be exactly divisible by {tex} \mathrm {\left(x^{2}-4 x+3\right) }{/tex}
Question 23 :
If the transpose of a matrix is equal to its additive inverse, that matrix is called
Question 24 :
The principal diagonal elements of the given matrix<br>{tex}\begin{bmatrix}-3 &1& 9 \\-7 & 4& -4 \\ -9 & 2 & 7 \end{bmatrix} {/tex}are<br>
Question 25 :
A stream flows from A to B, a distance of 13.00 km. A man who can row in still water at 9.00 kmph, can row up and down in 3.60 hrs . What is the speed of the stream?
Question 26 :
If 9 is the root of {tex}\mathrm { \left(x^{2}+k x+27\right)=0, }{/tex} find {tex} \mathrm{k} {/tex} and the other root
Question 27 :
Find the value of a and b such that b x<sup>4 </sup>− 7 x<sup>3 </sup>− 3 x<sup>2 </sup>+ 28x + a is exactly divisible by ( 2 x<sup>2 </sup>− x − 10 )
Question 28 :
Which of the following are true for matrices {tex} \mathrm{A}, \mathrm{B} {/tex} and {tex} \mathrm{C} {/tex} ?<br> a) {tex} \mathrm {A \times(B+C)=(A \times B)+(A \times C) }{/tex} <br>b) {tex}\mathrm { (A \times I)=(I \times A)=I} {/tex}<br>c) {tex} \mathrm {(A+B) \times C=(A \times B)+(A \times C)} {/tex} .<br>d) {tex} \mathrm {A \times(B \times C)=(A \times B) \times C} {/tex}<br>e) {tex} \mathrm {(A \times B)=(B \times A)} {/tex} <br>f) {tex} \mathrm { (A \times I)=(I \times A)=A} {/tex}
Question 29 :
If ( x<sup>2 </sup>− 1 ) is a factor of a x<sup>4 </sup>+ b x<sup>3 </sup>+ c x<sup>2 </sup>+ dx + e , which of the following are true ? a) a + c + e = 0 b) b + d = 0 c) a + b + c = d + e d) a + b + c = 0 e) a + b + c + d + e = 0 f) d + e = 0
Question 30 :
If {tex} \mathrm {a x^{2}+b x+c} {/tex} is exactly divisible by {tex}\mathrm { (x-5),(x-9) }{/tex} and leaves a remainder of 60 when divided by {tex} (\mathrm x+1), {/tex} find {tex}\mathrm { a, b} {/tex} and {tex}\mathrm c {/tex}