Question 1 :
Find the value of$\displaystyle\left( { 7a }^{ 6 }-8{ a }^{ 5 }+9{ a }^{ 4 } \right) \div { a }^{ 3 }$
Question 2 :
Which of the following does not have $\displaystyle (x-3)$ as a factor?
Question 4 :
Factorise: $\displaystyle { a }^{ 3 }-5{ a }^{ 2 }+a-5$
Question 5 :
Divide:$\displaystyle\left( { x }^{ 8 }{ y }^{ 7 }{ z }^{ 6 }-{ z }^{ 6 }{ y }^{ 7 }{ x }^{ 8 } \right)$ by$\displaystyle{ y }^{ 7 }{ x }^{ 8 }{ z }^{ 6 }$
Question 6 :
If $\displaystyle \left( x-2 \right) $ is a factor of polynomial $\displaystyle { x }^{ 3 }+{ 2x }^{ 2 }-kx+10$. Then the value of $k$ will be:
Question 9 :
Evaluate: $\displaystyle \left( 4{ x }^{ 8 }-{ 5x }^{ 6 }+{ 6x }^{ 4 } \right) \div { x }^{ 4 }$
Question 10 :
Divide : $\displaystyle \left( 51{ m }^{ 3 }{ p }^{ 2 }-34{ m }^{ 2 }{ p }^{ 3 } \right)$ by $17mp$
Question 11 :
If $ab + bc + ca = 0$, then the value of $\displaystyle \frac{1}{a^{2}-bc}+\frac{1}{b^{2}-ca}+\frac{1}{c^{2}-ab}$ will be
Question 12 :
$\displaystyle \frac{x^{-1}}{x^{-1} + y^{-1}} + \frac{x^{-1}}{x^{-1} - y^{-1}}$ is equal to
Question 13 :
Factorisation of the expression $\displaystyle -15x+5{ x }^{ 3 }$ gives result as
Question 14 :
Factorize $(a - b)^{5} + (b - c)^{5} + (c - a)^{5}$
Question 15 :
Divide $\displaystyle 10{ a }^{ 2 }{ b }^{ 2 }\left( 5x-25 \right)$ by $15ab\left( x-5 \right) $
Question 16 :
Evaluate: $\displaystyle \frac { 35\left( x-3 \right) \left( { x }^{ 2 }+2x+4 \right)  }{ 7\left( x-3 \right)  } $
Question 17 :
Factorise :$\displaystyle { a }^{ 2 }{ x }^{ 2 }-{ b }^{ 2 }{ y }^{ 2 }$
Question 18 :
Evaluate :$\displaystyle10{ a }^{ 2 }b-15ab-25a{ b }^{ 2 }\div \left( \frac { -2 }{ 5 } ab \right)$
Question 19 :
Find the value of K if (x + 1) is a factor of $x^8+ Kx^3 - 2x + 1$.
Question 20 :
Divide:$\displaystyle\left( -16{ x }^{ 6 }-24{ x }^{ 4 } \right)$ by$\displaystyle\left( -{ 8x }^{ 3 } \right)$
Question 21 :
Divide $\displaystyle \left( 9{ x }^{ 2 }-24x+16 \right) $ by $\displaystyle \left( 3x-4 \right) $
Question 22 :
If $\alpha$ and $\beta$ are the roots of $ax^2+bx+c=0$, then the quadratic equation whose roots are $\cfrac{1}{\alpha}$  and $\cfrac{1}{\beta}$ is
Question 24 :
Find the value of $\displaystyle \left( { 3x }^{ 3 }+{ 2x }^{ 2 }+x \right) \div 4x$
Question 28 :
Simplify: $\displaystyle \left( { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }-{ a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }+{ a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 } \right) \div { a }^{ 2 }{ b }^{ 2 }{ c }^{ 3 }$
Question 29 :
Simplify: $\displaystyle \frac { 49\left( { x }^{ 4 }-2{ x }^{ 3 }-15{ x }^{ 2 } \right)  }{ 14x\left( x-5 \right)  } $
Question 30 :
Simplify: $\displaystyle \frac { 45\left( { a }^{ 4 }-3{ a }^{ 3 }-28{ a }^{ 2 } \right)  }{ 9a\left( a+4 \right)  } $