Question 1 :
If $\sin A = \frac{3}{4}$, calculate cos A and tan A respectively.
Question 2 :
In $\Delta PQR$, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of $\sin P, \cos P, \tan P$ respectively.
Question 3 :
In triangle ABC, right-angled at B, if $\tan A = \frac{1}{\sqrt3}$, then find the value of $\sin A \cos C +\cos A\sin C$
Question 4 :
In triangle ABC, right-angled at B, if $\tan A = \frac{1}{\sqrt3}$, then find the value of $\cos A \cos C -\sin A\sin C$
Question 5 :
Given $\sec \theta = \frac{13}{12}$ calculate $cosec\ \theta$ and $\cot \theta$ respectively.
Question 6 :
Given $15 \cot A = 8$, find $\sin A$ and $\sec A$ respectively.
Question 7 :
If $\tan \begin{pmatrix}A + B\end{pmatrix} = \sqrt3$, $\tan \begin{pmatrix}A - B\end{pmatrix} =\frac{1}{\sqrt3}$, $0^{\circ}< A + B ≤ 90^{\circ}$, $A > B$, find A and B respectively.
Question 11 :
The value of $\sin \theta$ increases as $\theta$ increases. True or False?
Question 12 :
$\sin \theta=\cos \theta$ for all values of $\theta$. True or False?
Question 16 :
The value of $\cos \theta$ increases as $\theta$ increases. True or False?
Question 19 :
$\sin 2A = 2 \sin A$ is true when A is equal to
Question 23 :
If $\sec 4A = cosec\ \begin{pmatrix}A – 20^{\circ}\end{pmatrix}$, where 4A is an acute angle, find the value of A.
Question 25 :
$\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} = 1$. TRUE or FALSE?
Question 27 :
Express $\sin 67^{\circ} + \cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$.
Question 29 :
If $\tan 2A = \cot \begin{pmatrix}A – 18^{\circ}\end{pmatrix}$, where 2A is an acute angle, find the value of A.
Question 31 :
If A, B and C are interior angles of a triangle ABC, then $\sin\begin{pmatrix}\frac{B+C}{2}\end{pmatrix}\ne\cos\begin{pmatrix}\frac{A}{2}\end{pmatrix}$. TRUE or FALSE ?
Question 32 :
$\cos 38^{\circ} \cos 52^{\circ} – \sin 38^{\circ} \sin 52^{\circ} \ne 0$. TRUE or FALSE?
Question 34 :
Evaluate : $sin 25° cos 65° + cos 25° sin 65°$
Question 35 :
(1 + tan θ + sec θ) (1 + cot θ – cosec θ) = ____
Question 36 :
Can the trigonometric ratios sin A, sec A and tan A be expressed in terms of cot A?
Question 37 :
Is $\frac{cos A – sin A + 1}{cos A + sin A - 1}= cosecA + cotA$?
Question 40 :
(sec A + tan A) (1 – sin A) = ______
Question 41 :
Is this equality correct ? $\frac{tan A}{1- cotA} + \frac{cotA}{1-tanA}= 1+ secAcosecA$
Question 42 :
Is this equality correct ?$(cosec A – sin A) (sec A – cos A)= \frac{1}{tan A +cot A}$
Question 44 :
Is $(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2 A + cot^2 A$?
Question 50 :
Can all the other trigonometric ratios of ∠ A be written in terms of sec A?