Question 1 :
The given relation is $(1 + \tan a + \cos a)(\sin a - \cos a )= 2\sin a\tan a - cat\,a\cos a$
Question 2 :
Simplest form of $\displaystyle \dfrac{1}{\sqrt{2 + \sqrt{2 + \sqrt{2 + 2 cos 4x}}}}$ is
Question 3 :
Express$\displaystyle \cos { { 79 }^{ o } } +\sec { { 79 }^{ o } }$ in terms of angles between$\displaystyle { 0 }^{ o }$ and$\displaystyle { 45 }^{ o }$
Question 4 :
The given expression is $\displaystyle \sin { \theta  } \cos { \left( { 90 }^{ o }-\theta  \right)  } +\cos { \theta  } \sin { \left( { 90 }^{ o }-\theta  \right)  } +4 $ equal to :<br/>
Question 6 :
The solution of $(2 cosx-1)(3+2 cosx)=0$ in the interval $0 \leq \theta \leq 2\pi$ is-
Question 7 :
IF A+B+C=$ \displaystyle 180^{\circ}  $ ,then $  tan A+tanB+tanC $ is equal to
Question 8 :
$\left( \dfrac { cosA+cosB }{ sinA-sinB }  \right) ^{ 2014 }+\left( \cfrac { sinA+sinB }{ cosA-cosB }  \right) ^{ 2014 }=...........$
Question 9 :
Choose the correct option. Justify your choice.<br/>$\displaystyle 9{ \sec }^{ 2 }A-9{ \tan }^{ 2 }A=$<br/>
Question 12 :
As value of $x$ increases from $0$ to $\cfrac{\pi}{2}$, the value of $\cos {x}$:
Question 13 :
find whether ${ \left( \sin { \theta  } +co\sec { \theta  }  \right)  }^{ 2 }+{ \left( \cos { \theta  } +\sec { \theta  }  \right)  }^{ 2 }=7+\tan ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } $ is true or false.
Question 15 :
The angle of elevation and angle of depression both are measured with
Question 16 :
Given $tan \theta = 1$, which of the following is not equal to tan $\theta$?
Question 17 :
Value of ${ cos }^{ 2 }{ 135 }^{ \circ  }$
Question 18 :
If $sec\theta -tan\theta =\dfrac{a}{b},$ then the value of $tan\theta $ is
Question 19 :
If $\displaystyle x=y\sin \theta \cos \phi ,y=\gamma \sin \theta \sin \phi ,z=\gamma \cos \theta $. Eliminate  $\displaystyle \theta $ and  $\displaystyle \phi $
Question 21 :
Select and wire the correct answer from the given alternatives. <br/>$\cos \left(\dfrac {3\pi}{2}+\theta \right)=$ ____
Question 22 :
If $sin({ 90 }^{ 0 }-\theta )=\dfrac { 3 }{ 7 } $, then $cos\theta $
Question 25 :
The expression$ \displaystyle \left (\tan \Theta +sec\Theta \right )^{2} $ is equal to
Question 26 :
IF $ \displaystyle \tan \theta =\sqrt{2}    $ , then the value of $ \displaystyle \theta     $ is 
Question 29 :
Select and wire the correct answer from the given alternatives. <br/>$\cos \left(\dfrac {3\pi}{2}+\theta \right)=$ ____
Question 30 :
The value of $\sqrt { 3 } \sin { x } +\cos { x } $ is max. when $x$ is equal to
Question 31 :
Given $\cos \theta = \dfrac{\sqrt3}{2}$, which of the following are the possible values of  $\sin 2 \theta$?
Question 32 :
If $3\sin\theta + 5 \cos\theta =5$, then the value of $5\sin\theta -3 \cos\theta $ are 
Question 33 :
If $A+B+C=\dfrac { 3\pi }{ 2 } $, then $cos2A+cos2B+cos2C$ is equal to
Question 34 :
Solve : $\dfrac { 2tan{ 30 }^{ \circ  } }{ 1+{ tan }^{ 2 }{ 30 }^{ \circ  } } $
Question 36 :
If $\displaystyle  \cos A+\cos ^2A=1$ then the value of $\displaystyle  \sin ^{2}A+\sin ^{4}A$ is
Question 41 :
If $\displaystyle 5\tan \theta =4$, then find the value of $\displaystyle \frac{5\sin \theta -3\cos \theta }{5\sin \theta +2\cos \theta }$. 
Question 42 :
If $\tan \theta = \dfrac {4}{3}$ then $\cos \theta$ will be
Question 43 :
Eliminate $\theta$ and find a relation in x, y, a and b for the following question.<br/>If $x = a sec \theta$ and $y = a tan \theta$, find the value of $x^2 - y^2$.
Question 45 :
Solve:$\displaystyle \sin ^{4}\theta +2\cos ^{2}\theta \left ( 1-\frac{1}{\sec ^{2}\theta } \right )+\cos ^{4}\theta $
Question 46 :
If $ \alpha \epsilon \left[ \frac { \pi  }{ 2 } ,\pi  \right] $ then the value of $\sqrt { 1+sin\alpha  } -\sqrt { 1-sin\alpha  } $ is equal to
Question 47 :
Find the value of $\sin^3\left( 1099\pi -\dfrac { \pi  }{ 6 }  \right) +\cos^3\left( 50\pi -\dfrac { \pi  }{ 3 }  \right) $
Question 49 :
If $\sin \theta + \cos\theta = 1$, then what is the value of $\sin\theta \cos\theta$?
Question 50 :
Find the value of $ \displaystyle  \theta , cos\theta  \sqrt{\sec ^{2}\theta -1}     = 0$