Question Text
Question 1 :
If A, B and C are interior angles of a triangle ABC, then $\sin\begin{pmatrix}\frac{B+C}{2}\end{pmatrix}\ne\cos\begin{pmatrix}\frac{A}{2}\end{pmatrix}$. TRUE or FALSE ?
Question 2 :
The value of $\sin \theta$ increases as $\theta$ increases. True or False?
Question 4 :
Evaluate : $sin 25° cos 65° + cos 25° sin 65°$
Question 6 :
Can all the other trigonometric ratios of ∠ A be written in terms of sec A?
Question 9 :
$\sin 2A = 2 \sin A$ is true when A is equal to
Question 10 :
(1 + tan θ + sec θ) (1 + cot θ – cosec θ) = ____
Question 13 :
Can the trigonometric ratios sin A, sec A and tan A be expressed in terms of cot A?
Question 15 :
Express $\sin 67^{\circ} + \cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$.
Question 16 :
If $\sec 4A = cosec\ \begin{pmatrix}A – 20^{\circ}\end{pmatrix}$, where 4A is an acute angle, find the value of A.
Question 21 :
If $\tan 2A = \cot \begin{pmatrix}A – 18^{\circ}\end{pmatrix}$, where 2A is an acute angle, find the value of A.
Question 22 :
$\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} = 1$. TRUE or FALSE?
Question 23 :
(sec A + tan A) (1 – sin A) = ______
Question 25 :
Is this equality correct ?$(cosec A – sin A) (sec A – cos A)= \frac{1}{tan A +cot A}$
Question 26 :
Is this equality correct ? $\frac{tan A}{1- cotA} + \frac{cotA}{1-tanA}= 1+ secAcosecA$