Question Text
Question 1 :
If $\sec 4A = cosec\ \begin{pmatrix}A – 20^{\circ}\end{pmatrix}$, where 4A is an acute angle, find the value of A.
Question 3 :
The value of $\cos \theta$ increases as $\theta$ increases. True or False?
Question 4 :
The value of $\sin \theta$ increases as $\theta$ increases. True or False?
Question 5 :
Evaluate : $sin 25° cos 65° + cos 25° sin 65°$
Question 6 :
Express $\sin 67^{\circ} + \cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$.
Question 12 :
Can the trigonometric ratios sin A, sec A and tan A be expressed in terms of cot A?
Question 13 :
$\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ} = 1$. TRUE or FALSE?
Question 20 :
Is $(sin A + cosec A)^2 + (cos A + sec A)^2 = 7 + tan^2 A + cot^2 A$?
Question 21 :
$\cos 38^{\circ} \cos 52^{\circ} – \sin 38^{\circ} \sin 52^{\circ} \ne 0$. TRUE or FALSE?
Question 23 :
$\sin \theta=\cos \theta$ for all values of $\theta$. True or False?
Question 26 :
If $\tan 2A = \cot \begin{pmatrix}A – 18^{\circ}\end{pmatrix}$, where 2A is an acute angle, find the value of A.
Question 27 :
Is this equality correct ? $\frac{tan A}{1- cotA} + \frac{cotA}{1-tanA}= 1+ secAcosecA$
Question 29 :
$\sin 2A = 2 \sin A$ is true when A is equal to