Question 1 :
The value of $$[\dfrac{\tan 30^{o}.\sin 60^{o}.\csc 30^{o}}{\sec 0^{o}.\cot 60^{o}.\cos 30^{o}}]^{4}$$ is equal to
Question 2 :
Choose the correct option. Justify your choice.<br/>$$\displaystyle 9{ \sec }^{ 2 }A-9{ \tan }^{ 2 }A=$$<br/>
Question 3 :
Given $$tan \theta = 1$$, which of the following is not equal to tan $$\theta$$?
Question 4 :
Eliminate $$\theta$$ and find a relation in x, y, a and b for the following question.<br/>If $$x = a sec \theta$$ and $$y = a tan \theta$$, find the value of $$x^2 - y^2$$.
Question 6 :
The angle of elevation and angle of depression both are measured with
Question 7 :
If $$ \alpha \epsilon \left[ \frac { \pi  }{ 2 } ,\pi  \right] $$ then the value of $$\sqrt { 1+sin\alpha  } -\sqrt { 1-sin\alpha  } $$ is equal to
Question 9 :
Solve:$$\displaystyle \sin ^{4}\theta +2\cos ^{2}\theta \left ( 1-\frac{1}{\sec ^{2}\theta } \right )+\cos ^{4}\theta $$
Question 10 :
Find the value of $$\sin^3\left( 1099\pi -\dfrac { \pi  }{ 6 }  \right) +\cos^3\left( 50\pi -\dfrac { \pi  }{ 3 }  \right) $$
Question 14 :
Simplest form of $$\displaystyle \dfrac{1}{\sqrt{2 + \sqrt{2 + \sqrt{2 + 2 cos 4x}}}}$$ is
Question 16 :
If $$\sec{2A}=\csc{(A-42^\circ)}$$ where $$2A$$ is acute angle then value of $$A$$ is
Question 17 :
IF A+B+C=$$ \displaystyle 180^{\circ}  $$ ,then $$  tan A+tanB+tanC $$ is equal to
Question 19 :
$$\tan \theta$$ increases as $$\theta$$ increases.<br/>If true then enter $$1$$ and if false then enter $$0$$.<br/>
Question 20 :
The given expression is $$\displaystyle \sin { \theta  } \cos { \left( { 90 }^{ o }-\theta  \right)  } +\cos { \theta  } \sin { \left( { 90 }^{ o }-\theta  \right)  } +4 $$ equal to :<br/>
Question 22 :
Given $$\cos \theta = \dfrac{\sqrt3}{2}$$, which of the following are the possible values of  $$\sin 2 \theta$$?
Question 23 :
If $$\sin \theta + \cos\theta = 1$$, then what is the value of $$\sin\theta \cos\theta$$?
Question 26 :
IF $$ \displaystyle \tan \theta =\sqrt{2}    $$ , then the value of $$ \displaystyle \theta     $$ is 
Question 27 :
If $$A+B+C=\dfrac { 3\pi }{ 2 } $$, then $$cos2A+cos2B+cos2C$$ is equal to
Question 29 :
The value of $$\sqrt { 3 } \sin { x } +\cos { x } $$ is max. when $$x$$ is equal to
Question 30 :
If $$\displaystyle 5\tan \theta =4$$, then find the value of $$\displaystyle \frac{5\sin \theta -3\cos \theta }{5\sin \theta +2\cos \theta }$$. 
Question 33 :
Maximum value of the expression $$\begin{vmatrix} 1+{\sin}^{2}x & {\cos}^{2}x & 4\sin2x \\ {\sin}^{2}x & 1+{\cos}^{2}x & 4\sin2x \\ {\sin}^{2}x & {\cos}^{2}x & 1+4\sin2x \end{vmatrix}=$$
Question 34 :
Select and wire the correct answer from the given alternatives. <br/>$$\cos \left(\dfrac {3\pi}{2}+\theta \right)=$$ ____
Question 36 :
If$$\displaystyle \cot A=\frac{12}{5}$$ then the value of$$\displaystyle \left ( \sin A+\cos A \right )$$ $$\displaystyle \times cosec$$ $$\displaystyle A$$ is
Question 37 :
Value of $${ cos }^{ 2 }{ 135 }^{ \circ  }$$
Question 38 :
If $$\displaystyle \tan { \theta  } =\frac { 1 }{ 2 } $$ and $$\displaystyle \tan { \phi  } =\frac { 1 }{ 3 } $$, then the value of $$\displaystyle \theta +\phi $$ is:
Question 40 :
If $$\tan \theta = \dfrac {4}{3}$$ then $$\cos \theta$$ will be
Question 41 :
If $$3\sin\theta + 5 \cos\theta =5$$, then the value of $$5\sin\theta -3 \cos\theta $$ are 
Question 43 :
As value of $$x$$ increases from $$0$$ to $$\cfrac{\pi}{2}$$, the value of $$\cos {x}$$:
Question 44 :
Which of the following is equal to $$\sin x \sec x$$?
Question 45 :
The solution of $$(2 cosx-1)(3+2 cosx)=0$$ in the interval $$0 \leq \theta \leq 2\pi$$ is-
Question 46 :
The expression$$ \displaystyle \left (\tan \Theta +sec\Theta \right )^{2} $$ is equal to
Question 48 :
Solve : $$\dfrac { 2tan{ 30 }^{ \circ  } }{ 1+{ tan }^{ 2 }{ 30 }^{ \circ  } } $$
Question 49 :
Select and wire the correct answer from the given alternatives. <br/>$$\cos \left(\dfrac {3\pi}{2}+\theta \right)=$$ ____
Question 50 :
If $$\displaystyle  \cos A+\cos ^2A=1$$ then the value of $$\displaystyle  \sin ^{2}A+\sin ^{4}A$$ is