Question 3 :
If $\displaystyle \cos \theta =\frac{1}{2}$ then the value of $\displaystyle \frac{2\sec \theta }{1+\tan ^{2}\theta }$ is
Question 4 :
$\displaystyle \sin { \theta } +\cos { \theta } =1$ where $\displaystyle \theta= $
Question 5 :
If $cosec\,\theta=\dfrac{29}{21}$ where $0 < \theta < 90^0$, then what is the value of $4\sec\theta+4\tan\theta$ ?
Question 7 :
If $\sin\alpha + \sin\beta = a$ and $\cos \alpha - \cos \beta =b, $ then $\tan \left( \frac{\alpha -\beta}{2} \right) $ is equal to-
Question 8 :
The value of $\cos ^{ 2 }{ 73 }^{o} +\cos ^{ 2 }{ 47 }^{o} -\sin ^{ 2 }{ 43 }^{o} +\sin ^{ 2 }{ 107 }^{o}$ is equal to :
Question 9 :
If $\displaystyle \sin \theta +\sin ^{2}\theta =1$ then the value of $\displaystyle \left ( \cos ^{2}\theta +\cos ^{4}\theta \right )$ is
Question 10 :
If $\displaystyle \theta =45$ then $\displaystyle \frac { 2\tan { \theta } }{ 1+{ \tan }^{ 2 }\theta } $ is :
Question 11 :
A ladder 20 m long is placed against a vertical wall of height 10 m, determine the distance between foot of the ladder and the wall and also the inclination of the ladder with the horizontal.
Question 12 :
If $ \alpha \epsilon \left[ \frac { \pi }{ 2 } ,\pi \right] $ then the value of $\sqrt { 1+sin\alpha } -\sqrt { 1-sin\alpha } $ is equal to
Question 16 :
Choose the correct answer from the alternatives given :<br>If $\frac{tan \theta \, + \, cot \theta}{tan \theta \, - \, cot \theta} \, = \, 2, \, (0 \leq \theta \leq 90^\circ)$ then the value of $sin \theta$ is
Question 17 :
If $\theta$ is an acute angle such that $\tan^{2}{\theta}=\dfrac{8}{7}$,then the value of $\displaystyle\frac{(1+\sin{\theta})(1-\sin{\theta})}{(1+\cos{\theta})(1-\cos{\theta})}$ is
Question 18 :
If $\displaystyle \sin { \theta } =\frac { 8 }{ 17 } $ and $\displaystyle { 90 }^{ o }<\theta <{ 180 }^{ o }$, then the value of the expression $\displaystyle \frac { 2\sin { \theta } +\cos { \theta } }{ 3\cos { \theta } +5\sin { \theta } } $ is :
Question 19 :
If $(\sec{A}-\tan{A})(\sec{B}-\tan{B})(\sec{C}-\tan{C})=(\sec{A}+\tan{A})(\sec{B}+\tan{B})(\sec{C}+\tan{C})$ represents each side of a equilateral triangle, then each side is equal to -
Question 20 :
If $A=\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta\end{bmatrix}$ then $\displaystyle\underset{n\rightarrow \infty}{Lt}\dfrac{1}{n}|A^n|=?$
Question 21 :
${\cos ^2}{48^ \circ } - {\sin ^2}{12^ \circ }$ is equal to -
Question 22 :
If $\displaystyle \frac{\sin x}{a}= \frac{\cos x}{b}= \frac{\tan x}{c}= k,$ then $\displaystyle bc+\frac{1}{ck}+\frac{ak}{1+bk} $ is equal to<br><br><br>
Question 23 :
If $ABCD$ is a cyclic quadrilateral such that $12$ $\tan A-5=0$ and 5 $\cos B+3=0$, then $\cos C\tan D=$<br/>
Question 24 :
If $\displaystyle \sin^4\theta+\frac {1}{\sin^4\theta}=194$, then the value of $(2 \text{cosec}\theta-\cot\theta \cos\theta)$ can be<br/>
Question 25 :
If $2 \sec 2\alpha = \tan\beta + \cot \beta$, then one of the value of $\alpha+\beta$ is-