Question Text
Question 1 :
If $sec\theta -tan\theta =\dfrac{a}{b},$ then the value of $tan\theta $ is
Question 2 :
If $\theta$ increases from $0^0$ to $90^o$, then the value of $\cos\theta$: <br/>
Question 3 :
If $\displaystyle 5\tan \theta =4$, then find the value of $\displaystyle \frac{5\sin \theta -3\cos \theta }{5\sin \theta +2\cos \theta }$. 
Question 4 :
The given expression is $\displaystyle \sin { \theta  } \cos { \left( { 90 }^{ o }-\theta  \right)  } +\cos { \theta  } \sin { \left( { 90 }^{ o }-\theta  \right)  } +4 $ equal to :<br/>
Question 5 :
Choose the correct option. Justify your choice.<br/>$\displaystyle 9{ \sec }^{ 2 }A-9{ \tan }^{ 2 }A=$<br/>
Question 8 :
Find the value of $ \displaystyle  \theta , cos\theta  \sqrt{\sec ^{2}\theta -1}     = 0$
Question 13 :
If $sin({ 90 }^{ 0 }-\theta )=\dfrac { 3 }{ 7 } $, then $cos\theta $
Question 14 :
Choose and write the correct alternative.<br>If $3 \sin \theta = 4 \cos \theta$ then $\cot \theta = ?$<br>