Question 1 :
Given that $ \displaystyle \cos 50^{\circ}18'=0.6388\ and\ \cos 50^{\circ}42'=0.6334, $ then the possible value of $ \displaystyle \cos 50^{\circ}20' $ is 
Question 2 :
If $ \displaystyle \sin \Theta +\cos \Theta =\sqrt{2,} and \Theta $ is actual , then $ \displaystyle \tan \Theta $ is equal to
Question 3 :
If $x\cos { { 60 }^{ o } } -y\cos { { 0 }^{ o } } =3$<br/>$4x\sin { { 360 }^{ o } } -y\cot { { 45 }^{ o } } =2$<br/>then what is the value of $x$?
Question 8 :
In $\sin \theta  = \dfrac{{ - 1}}{{\sqrt 2 }}\& \;\tan \;\theta $ lies in which quadrant?
Question 9 :
If tan A = 4 /3, tanB = 1/ 7,then A - B =
Question 10 :
Change the following radian measures to degree measure:<br/>$-\cfrac { 2\pi  }{ 3 } $
Question 11 :
If A, B are supplementary angles then $ \ cos^2 A + \ sin^2 B =$
Question 13 :
Change the following degree measures to radian measure: ${ 45 }^{ o }$
Question 14 :
If $\sec \theta = 1$; $0 \leq \theta < 12^\circ$, then the value of $\theta$ is<br/>
Question 15 :
$l=\left (\displaystyle \frac {\cot^2x\cdot \cos^2x}{\cot^2x-\cos^2x}\right )^2$ and $m=a^{\log} \sqrt a^{\left [2 \cos \displaystyle \frac {y}{2}\right ]}$, at $y=4\pi$, then $l^2+m^2$ is equal to
Question 16 :
If the angles of a triangle are in arithmetic progression such that $\sin (2A + B) =\dfrac 12$, then
Question 18 :
The measure of an angle in degrees, grades and radians be D, G and C respectively, then relation between them $\displaystyle \frac{D}{90}=\frac{G}{100}=\frac{2C}{\pi }$ but $\displaystyle 1^{\circ}=\left ( \frac{180}{\pi } \right )^{\circ}\:\simeq 57^{\circ},17',44.{8}''$ and sum of interior angles of a $n$-sided regular polygon is $\displaystyle \left ( 2n-4 \right )\dfrac {\pi }2$. On the basis of above information, answer the following questions :Which of the following are correct<br/>