Question 1 :
Express in Degrees:<br/>$(a) \displaystyle \left ( \frac{2 \pi}{15} \right )^{c}$ <br> $(b) \displaystyle (-2)^{c}$
Question 3 :
If $ \displaystyle \tan \Theta =2-\sqrt{3}$,then $ \tan \left ( 90^{\circ}-\Theta \right ) $ is equl to
Question 7 :
The value of ${\cos ^2}{45^ \circ } - {\sin ^2}{15^ \circ }$ is
Question 8 :
If $ \displaystyle \sin \Theta +\cos \Theta =\sqrt{2,} and \Theta $ is actual , then $ \displaystyle \tan \Theta $ is equal to
Question 10 :
If $x\cos { { 60 }^{ o } } -y\cos { { 0 }^{ o } } =3$<br/>$4x\sin { { 360 }^{ o } } -y\cot { { 45 }^{ o } } =2$<br/>then what is the value of $x$?
Question 11 :
If $\tan 45^{\circ} = \cot \theta$, then the value of $\theta$, in radians is
Question 14 :
In $\sin \theta  = \dfrac{{ - 1}}{{\sqrt 2 }}\& \;\tan \;\theta $ lies in which quadrant?
Question 19 :
The value of $\cot 15^{\circ} \cot 20^{\circ} \cot 70^{\circ} \cot 75^{\circ}$ is equal to
Question 20 :
What is the value of $\dfrac {(\cos 10^{o}+\sin 20^{o})}{(\cos 20^{o}-\sin 10^{o})}$?
Question 25 :
Consider the following statements :<br>1. $1^o$ in radian measure is less than 0.02 radians.<br>2. 1 radian in degree measure is greater than $45^o$ <br>Which of the above statements is/are correct ?
Question 26 :
If $\theta$ is in the first quadrant and cos $\theta=\frac{3}{5}$, then the value of $\dfrac{5 tan \theta -4cosec \theta}{5 sec\theta-4cot \theta}$ is<br/><br/>
Question 28 :
Find the value of $\dfrac{sin (-660^o) tan (1050^o) sec (-420^o)}{cos (225^o ) cosec (315^o) cos(510^o)}$
Question 29 :
Given that $ \displaystyle \cos 50^{\circ}18'=0.6388\ and\ \cos 50^{\circ}42'=0.6334, $ then the possible value of $ \displaystyle \cos 50^{\circ}20' $ is 
Question 30 :
If $\tan \alpha  = 2$, then the value of $\dfrac{{\sin \alpha }}{{{{\sin }^3}\alpha  + {{\cos }^3}\alpha }}$ is
Question 31 :
The value of $4\cos^{2} \dfrac {\pi}{3} + \sec^{2} \dfrac {\pi}{6} - \sin^{2} \dfrac {\pi}{4}$ is
Question 34 :
Evaluate $8 \sqrt{3} \, \text{cosec}^2 30^o \, \sin \, 60^o \, \cos \, 60^o \, \cos^2 45^o \, \sin \, 45^o \, \tan \, 30^o \, \text{cosec}^3 45^o$
Question 36 :
Change the following radian measure to degree measure:<br/>$\cfrac { 3\pi  }{ 2 } $
Question 37 :
If tan A = 4 /3, tanB = 1/ 7,then A - B =
Question 39 :
If P = cos $\dfrac {\pi } {20} .cos \dfrac {3\pi } {20} .cos\dfrac {7\pi } {20} . cos\dfrac{9\pi } {20} $ & Q = cos$ \dfrac{\pi } {11}. cos\dfrac{2\pi } {11} .cos\dfrac{4\pi } {11} . cos\dfrac {8\pi } {11}. cos \dfrac {16\pi } {11}, then \dfrac {P} {Q} $ is
Question 40 :
If $0<x<\pi$ , and $\cos { x } +\sin { x } =\cfrac { 1 }{ 2 }$, then $\tan { x } $ is -<br><br>