Question Text
Question 2 :
If  $90^{\circ} < A < 180^{\circ}$   $\sin A= \frac{4}{5}$  then $tan\frac{A}{2}$  is equal to 
Question 3 :
The value of $\sec^2 (\tan^{-1}3) + \text{cosec}^2 (\cot^{-1}2)$ is equal to
Question 4 :
<b>If $\sin { \theta  } +\cos { \theta  } =p$ and $\tan { \theta  } +\cot { \theta  } =q$, then $q\left( { p }^{ 2 }-1 \right) =$</b>
Question 5 :
If$\displaystyle \sin B=\frac{1}{2}$ what is the value of$\displaystyle 3\cos B-4\cos ^{3}B?$
Question 8 :
Consider the following statements :<br>1. $1^o$ in radian measure is less than 0.02radians.<br>2. 1 radian in degree measure is greaterthan $45^o$<br>Which of the above statements is/arecorrect ?
Question 10 :
If$\alpha $ and$\beta $ are two different solution lying between${{ - \pi } \over 2}$ and${\pi \over 2}$ of the equation$2{\mathop{\rm Tan}\nolimits} \theta + {\mathop{\rm Sec}\nolimits} \theta - 2$ then${\mathop{\rm Tan}\nolimits} \alpha + {\mathop{\rm Tan}\nolimits} \beta $ is
Question 12 :
In which quadrant does the terminal side of the angle $420^0$ lie?<br/>
Question 14 :
If $\tan\theta +\tan 4\theta +\tan 7\theta =\tan \theta \tan 4\theta \tan 7\theta$, then the general solution is?
Question 16 :
The number of value $x$ in the interval $[0,3\pi]$ satisfying the $eq^n 2\sin^2x+5\sin \,\,x-3=0$ is 
Question 19 :
Let $P$ be the relation defined on the set of all real numbers such that $P={(a,b)/\sec^{2}\ a-\tan^{2}\ b=1}$, then $P$ is
Question 20 :
$\cfrac{{\sqrt 2  - \sin \alpha  - \cos \alpha }}{{\sin \alpha  - \cos \alpha }}$ is equal to