Question 2 :
The element in the second row and third column of the matrix $\displaystyle \begin{bmatrix}4 &5  &-6 \\3  &-4  &3 \\2  &1  &0 \end{bmatrix}$ is:
Question 3 :
If order of a matrix is $3 \times 3$, then it is a
Question 5 :
If $\displaystyle A=\left [ a_{ij} \right ]_{m\times\:n'}B=\left [ b_{ij} \right ]_{m\times\:n'}$ then the element $\displaystyle C_{23}$ of the matrix $C=A+B$, is:
Question 6 :
If $A = \displaystyle \left[ \begin{matrix} 1 &2 \\ 3& 4 \end{matrix} \right] $, then number of elements in $A$ are
Question 7 :
The order of a matrix $\begin{bmatrix} 2& 5& 7\end{bmatrix} $ is 
Question 8 :
If order of matrix $A$ is $4\times3$ and order of matrix $B$ is $3\times5$ then order of matrix $B'A'$ is:
Question 9 :
The matrix $A = \begin{bmatrix}0& 0 &4 \\ 0& 4 & 0\\ 4& 0 & 0\end{bmatrix}$ is a<br>
Question 10 :
If A+$\displaystyle \begin{vmatrix} 4 & 2 \\ 1 & 3 \end{vmatrix} $=$\displaystyle \begin{vmatrix} 6 & 9 \\ 1 & 4 \end{vmatrix} $ then A=
Question 11 :
If every row of a matrix $A$ contains $p$ elements and its column contains $q$ elements, then the order of $A$ is
Question 12 :
A matrix having $m$ rows and $n$ columns with $m=n$ is said to be a 
Question 13 :
If$\displaystyle \begin{vmatrix} 2 & 3 \\ 4 & 4 \end{vmatrix} $+$\displaystyle \begin{vmatrix} x & 3 \\ y & 1 \end{vmatrix} $=$\displaystyle \begin{vmatrix} 10 & 6 \\ 8 & 5 \end{vmatrix} $,then (x,y)=
Question 14 :
If $A = \begin{bmatrix}2 & 3 & 4 \\ -3 & 4 & 8\end{bmatrix}$ and $B = \begin{bmatrix}-1 & 4 & 7 \\ -3 & -2 & 5\end{bmatrix}$, Then $\quad A+B = \begin{bmatrix}1 & a & b \\ c & 2 & 13\end{bmatrix}$<br/>Find the value of $a+b+c=$
Question 15 :
The matrix $\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}$ is the matrix reflection in the line
Question 16 :
If A and B are square matrices of order n x n such that ${ A }^{ 2 }-{ B }^{ 2 }=\left( A-B \right) \left( A+B \right) ,$ then of the following will always be true?
Question 17 :
If $A$ and $B$ are matrices of order $3\times 2$ and $C$ is of order $2\times 3$, then which of the following matrices is not defined-
Question 18 :
If $A = \left[ \begin{array}{l}4\,\,\,\,\,1\,\,\,\,\,\,0\\1\,\, - 2\,\,\,\,\,2\end{array} \right]$,$B = \left[ \begin{array}{l}2\,\,\,\,\,0\,\,\,\, - 1\\3\,\,\,\,\,1\,\,\,\,\,\,\,\,4\end{array} \right]$, $C = \left[ \begin{array}{l}\,\,\,1\\\,\,\,2\\ - 1\end{array} \right]$ and $\left( {3B - 2A} \right)C + 2X = 0$ then $X$=
Question 19 :
If $\triangle =\left| \begin{matrix} arg{ z }_{ 1 } & arg{ z }_{ 2 } & arg{ z }_{ 3 } \\ arg{ z }_{ 2 } & arg{ z }_{ 3 } & arg{ z }_{ 1 } \\ arg{ z }_{ 3 } & arg{ z }_{ 1 } & arg{ z }_{ 2 } \end{matrix} \right|$, the, $\triangle$ is divided by:
Question 20 :
If $A$ and $B$ are two matrices of the order $3\times m$ and $3\times n$, respectively and $m=n$, then order of matrix $(5A-2B)$ is
Question 21 :
If $A$ is a square matrix of order $n\times n$, then adj(adj A) is equal to
Question 22 :
If the matrices has 13 elements , then the possible dimension (order) it can have are
Question 23 :
<b>If $A={ \left[ { a }_{ ij } \right] }_{ 2\times 2 }$where ${ a }_{ 15 }=\begin{cases} i+j \\ { i }^{ 2 }-2j \end{cases}\begin{matrix} i\neq j \\ i=j \end{matrix}$ then ${ A }^{ -1 }=$</b>
Question 24 :
If $A= [a_{ij}]_{2 \times 2}$ and $a_{ij} = i + j$, then A = <br>
Question 25 :
Given the equality of the following determinants. Find the value of $(a+b)$.<br>$\begin{vmatrix} 4 & 3\\ 6 & a\end{vmatrix} = \begin{vmatrix} 6 & b \\ 4 & 5\end{vmatrix}$<br><br>
Question 26 :
The restriction on $ n, k$ and $p$ so that $PY + WY$ will be defined are:<br>
Question 27 :
A matrix has $18$ elements. Find the number of possible orders of the matrix
Question 28 :
Let $a$ denote the element of the ${i^{th}}$ row and ${j^{th}}$ column in a $3 \times 3$ matrix and let ${a_{ij}} = \, - {a_{ji}}$ for every i and j then this matrix is an -
Question 29 :
If $A = \begin{bmatrix}2 & -1\\ 3 & 1\end{bmatrix}$ and $B = \begin{bmatrix}1 & 4\\ 7 & 2\end{bmatrix}$,  $3A - 2 B$ is
Question 30 :
The order of [x, y, z]$\begin{bmatrix}a & h & g\\ h & b & f\\ g & f & c\end{bmatrix}$ <br> $\begin{bmatrix}x\\ y \\z \end{bmatrix}$ is
Question 31 :
If $\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \end{vmatrix}$ = $(A+Bx)(x-A)^2$,<br>then the ordered pair $(A , B)$ is equal to:
Question 32 :
$\displaystyle \begin{vmatrix} 1 & a & {a}^{2}-bc \\ 1 & b & {b}^{2}-ca \\ 1 & c & {c}^{2}-ab \end{vmatrix}$=?
Question 33 :
Let $C_k =$ $^nC_k$ for $0\leq k\leq n$ and<br>$A_k=\begin{bmatrix}C_{k-1}^2&0 \\0 &C_k^2 \end{bmatrix}$ for $k\geq 1$, and $A_1+A_2+ ... + A_n=\begin{bmatrix}k_1 &0 \\0 &k_2\end{bmatrix}$, then<br>
Question 34 :
If $A = \dfrac {1}{\pi} \begin{bmatrix}\sin^{-1}(\pi x) & \tan^{-1} \left (\dfrac {\pi}{\pi}\right )\\ \sin^{-1} \left (\dfrac {x}{\pi}\right ) &\cot^{-1} (\pi x)\end{bmatrix}, B =\dfrac {1}{\pi} \begin{bmatrix}-\cos^{-1}(\pi x) &\tan^{-1} \left (\dfrac {x}{\pi}\right ) \\ \sin^{-1} \left (\dfrac {x}{\pi}\right ) & -\tan^{-1} (\pi x)\end{bmatrix}$, then $A - B$ is equal to<br/>
Question 35 :
If A =$\begin{bmatrix}1 & 2 \\ 3 & 4 \end{bmatrix}$, B =$\begin{bmatrix}2 & 3 \\ 4 & 5 \end{bmatrix}$, and 4A - 3B + C = 0, then C =
Question 36 :
If $A = \bigl(\begin{smallmatrix}1 & -2\\ -3 & 4\end{smallmatrix}\bigr)$ and $A + B = O$, then B is<br>
Question 37 :
Let $n\ge 2$ be an integer,<br/>$A=\begin{bmatrix} \cos { \left( { \dfrac{2\pi}n} \right)  }  & \sin { \left(\dfrac{2\pi}n \right)  }  & 0 \\ -\sin { \left( \dfrac{2\pi}n \right)  }  & \cos { \left(\dfrac{2\pi}n \right)  }  & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $I$ is the identity matrix of order $3$., then following of which is correct
Question 38 :
If $A = \bigl(\begin{bmatrix}7 &2 \\ 1 & 3\end{bmatrix}\bigr)$ and $A + B = \bigl(\begin{bmatrix} -1& 0\\ 2 & -4\end{bmatrix}\bigr)$, then the matrix B =<br/>
Question 39 :
Out of the following matrices, choose that matrix which is a scalar matrix.
Question 40 :
When a row matrix is multiplied by a column matrix both having the same number of elements, the resulting matrix formed is a ___?