Question 1 :
If for a matrix $\displaystyle A,{ A }+I=O$, where $I$ is an identity matrix, then $A$ equals
Question 3 :
If $A+B = \begin{bmatrix}1 & 0 \\ 1 & 1\end{bmatrix}$ and $A-2B = \begin{bmatrix}-1 & 1 \\ 0 & -1\end{bmatrix}$, then $A$ =
Question 5 :
The number of possible orders of a matrix containing $24$ elements are:
Question 6 :
If $A = \displaystyle \left[ \begin{matrix} 1 &2 \\ 3& 4 \end{matrix} \right] $, then number of elements in $A$ are
Question 8 :
If $\begin{bmatrix}x & 0 \\ 1 & y\end{bmatrix} +\begin{bmatrix}-2 & 1 \\ 3 & 4\end{bmatrix} =\begin{bmatrix}3 & 5 \\ 6 & 3\end{bmatrix} -\begin{bmatrix}2 & 4 \\ 2 & 1\end{bmatrix}$, then
Question 9 :
Let $A = \begin{bmatrix} 1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1\end{bmatrix}$. If $u_1$ and $u_2$ are column matrices such that $Au_1 = \begin{bmatrix}1\\0\\0\end{bmatrix}$ and $Au_2 = \begin{bmatrix}0\\1\\0\end{bmatrix}$ then $u_1 + u_2$ is equal to
Question 10 :
If order of matrix $A$ is $4\times3$ and order of matrix $B$ is $3\times5$ then order of matrix $B'A'$ is:
Question 11 :
If $2A+B=\begin{bmatrix} 6 & 4 \\ 6 & -11 \end{bmatrix}$ and $A-B=\begin{bmatrix} 0 & 2 \\ 6 & 2 \end{bmatrix}$, then $A=$
Question 12 :
If $A= \begin{bmatrix} 1 & 2 & 3\end{bmatrix}$, then order is
Question 13 :
If $A=\begin{bmatrix}5 & 2\\ 7 & 4\end{bmatrix}$ is a $2\times 2$ matrix, then $a_{12}$=
Question 14 :
Suppose $A$ and $B$ are two square matrices of same order. If $A,B$ are symmetric matrices and $AB=BA$ then $AB$ is
Question 15 :
IF A=$\displaystyle \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} $ And B=$\displaystyle \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} $ then A+B=
Question 16 :
If$\displaystyle \begin{vmatrix} x & 1 \\ y & 2 \end{vmatrix} $-$\displaystyle \begin{vmatrix} y & 1 \\ 8 & 0 \end{vmatrix} $=$\displaystyle \begin{vmatrix} 2 & 0 \\ -x & 2 \end{vmatrix} $ then the values of x and y respectively are
Question 18 :
$\displaystyle { A=\left[ { a }_{ ij } \right] }_{ m\times n}$ is a square matrix , if
Question 19 :
${a}^{-1}+{b}^{-1}+{c}^{-1}=0$ such that $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix}=\triangle$  then the value of $\triangle$  is
Question 20 :
If $A = \begin{bmatrix}1\end{bmatrix}$, then the order of the matrix is
Question 21 :
If $ A= \begin{bmatrix} 1 & 2\end{bmatrix}, B=\begin{bmatrix} 3 & 4\end{bmatrix}$ then $A+B=$
Question 22 :
If $A = \begin{bmatrix}1 & -2 \\ 3 & 0\end{bmatrix}, \space B = \begin{bmatrix}-1 & 4 \\ 2 & 3\end{bmatrix},\space C = \begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix}$, then $5A - 3B + 2C =$
Question 23 :
If order of $A+B$ is $n \times n$, then the order of $AB$ is
Question 24 :
If $2A-\begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix}=\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$, then $A$ is equal to-
Question 25 :
A square matrix $\left[ { a }_{ ij } \right] $ such that ${ a }_{ ij }=0$ for $i\ne j$ and ${ a }_{ ij }=k$ where $k$ is a constant for $i=j$ is called:
Question 26 :
Matrix $A$ is given by $A=\begin{bmatrix} 6 & 11 \\ 2 & 4 \end{bmatrix}$ then the determinant of ${A}^{2015} -6{A}^{2014} $ is.
Question 27 :
If A=$\displaystyle \begin{vmatrix} 2 & -3 \\ 3 & 2 \end{vmatrix} $ and B=$\displaystyle \begin{vmatrix} 3 & -2 \\ 2 & 3 \end{vmatrix} $ then 2A-B=
Question 28 :
The Inverse of a square matrix, if it exist is unique.
Question 29 :
The number of all possible matrices of order $3 \times 3$ with each entry $0$ or $1$ is:
Question 30 :
The order of $\begin{bmatrix}x & y & z\end{bmatrix}\begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\begin{bmatrix}x\\ y \\z\end{bmatrix}$ is
Question 31 :
If $\displaystyle  \begin{vmatrix} x & y   \\ 1 & 6   \end{vmatrix} $ = $\displaystyle  \begin{vmatrix} 1 & 8   \\ 1 & 6   \end{vmatrix} $ then x+2y=
Question 32 :
If $A$ and $B$ are square matrices such that $AB = I$ and $BA = I$, then $B$ is<br/>
Question 33 :
If order of a matrix is $3 \times 3$, then it is a
Question 34 :
If the matrix $\begin{bmatrix} 1 & 3 & \lambda +2 \\ 2 & 4 & 8 \\ 3 & 5 & 10 \end{bmatrix}$ is singular, then $\lambda=$
Question 35 :
Suppose $A$ is any $3\times 3$ non-singular matrix and $(A-3I)(A-5I)=O$, where $I=I_{3}$ and $O=O_{3}$, If $\alpha A+\beta A^{-1}=4I$, then $\alpha+\beta$ is equal to :
Question 36 :
Construct the matrix of order $3 \times 2$ whose elements are given by $a_{ij} = 2i - j$
Question 37 :
If the sum of the matrices $\begin{bmatrix} x \\ x \\ y \end{bmatrix},\begin{bmatrix} y \\ y \\ z \end{bmatrix}$ and $\begin{bmatrix} z \\ 0 \\ 0 \end{bmatrix}$ is the matrix $\begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix}$, then what is the value of $y$?
Question 38 :
The entries of a matrix are integers. Adding an integer to all entries on a row or on a column is called an operation. It is given that for infinitely many integers N one can obtain, after a finite number of operations, a table with all entries divisible by N. Prove that one can obtain, after a finite number of operations, the zero matrix.
Question 39 :
If $\displaystyle A=\left [ a_{ij} \right ]_{m\times\:n'}B=\left [ b_{ij} \right ]_{m\times\:n'}$ then the element $\displaystyle C_{23}$ of the matrix $C=A+B$, is:
Question 40 :
If A=$\displaystyle \begin{vmatrix} 0 & 1 \\ 2 & 4 \end{vmatrix} $, B=$\displaystyle \begin{vmatrix} -1 & 1 \\ 2 & 2 \end{vmatrix} $,<br>C=$\displaystyle \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} $, then 2A+3B-C=<br>