Question 1 :
If $A = \displaystyle \left[ \begin{matrix} 1 &2 \\ 3& 4 \end{matrix} \right] $, then number of elements in $A$ are
Question 2 :
If $\begin{bmatrix} x & 2 \\ 18 & x \end{bmatrix}=\begin{bmatrix} 6 & 2 \\ 18 & 6 \end{bmatrix}$, then x =
Question 3 :
If matrix $A$ is of order $p\times q$ and matrix $B$ is of order $r\times s$ ,then $A-B$ will exist if
Question 4 :
If $A+B = \begin{bmatrix}1 & 0 \\ 1 & 1 \end{bmatrix}$ and $A-2B = \begin{bmatrix}-1 & 1 \\ 0 & -1\end{bmatrix}$, then $A$ =
Question 5 :
If $\displaystyle A=\begin{bmatrix}x &y \\z  &w \end{bmatrix},B=\begin{bmatrix}x &-y \\-z  &w \end{bmatrix}$ and $C=\begin{bmatrix}-2x &0 \\0  &-2w \end{bmatrix},$ then $A+B+C$ is a:
Question 6 :
$A = \begin{bmatrix} 2 & 3& 1\\4&1&5\\3&9&7\end{bmatrix}$. Then the additive inverse of $A$ is
Question 7 :
$A=\left[\begin{array}{lll} 0 & 1 & -2\\1 & 0 & 3\\2 &-3 & 0 \end{array}\right]$ then $\mathrm{A}+\mathrm{A}^{\mathrm{T}}=$<br/>
Question 8 :
The matrix $A = \begin{bmatrix}1 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 &4 \end{bmatrix}$ is a/an<br/>
Question 9 :
If order of a matrix is $3 \times 3$, then it is a
Question 11 :
The value of $x$ satisfying the equation $2\displaystyle  \begin{bmatrix} 3 & 1   \\ 1 & 2   \end{bmatrix}  + $ $\displaystyle  \begin{bmatrix} x^{2} & 9   \\ -1 & 0   \end{bmatrix}  = $ $\displaystyle  \begin{bmatrix} 5x & 6   \\ 0 & 1  \end{bmatrix}   + $ $\displaystyle  \begin{bmatrix} 0 & 5   \\ 1 & 3   \end{bmatrix}   $are
Question 12 :
If $P=\displaystyle  \begin{bmatrix} 4 & 3 &2   \end{bmatrix}  $ and $Q = \displaystyle  \begin{bmatrix} -1 & 2 &3   \end{bmatrix}  ,$ then $P-Q=$
Question 13 :
In an upper triangular  matrix $A=\left[ a_{ ij } \right] _{ n\times n }$ the elements $a_{ij}=0$ for
Question 14 :
If $A=\begin{bmatrix} \cos { \theta } & -\sin { \theta } \\ \sin { \theta } & \cos { \theta } \end{bmatrix}$, then $A{A}^{T}$ equals
Question 15 :
If $X$ and $Y$ are the matrices of order $2 \times 2$ each and $2X - 3Y = \begin{bmatrix}-7 & 0\\ 7 & -13\end{bmatrix}$ and $3X + 2Y = \begin{bmatrix}9 & 13 \\ 4 & 13\end{bmatrix}$, then what is $Y$ equal to?
Question 16 :
<span>If $A=\displaystyle \left[ \begin{matrix} 1 &2 \\ 3& 4 \end{matrix} \right] $, then which of the following is not an element of $A$?</span>
Question 18 :
Given that $\displaystyle M=\begin{bmatrix}3 &-2 \\-4  &0 \end{bmatrix}\:and\:N=\begin{bmatrix}-2 &2 \\5  &0 \end{bmatrix}$<span>, then $M+N$ is a </span>
Question 20 :
If $5A=\begin{bmatrix} 3 & -4\\ 4 & x\end{bmatrix}$ and $AA^T=A^TA=I$ then $x=?$