Question 1 :
The number of possible orders of a matrix containing $$24$$ elements are:
Question 2 :
The order the matrix is $$ \begin{bmatrix}2 & 3 & 4 \\ 9 & 8 & 7 \end{bmatrix}$$ is <br/>
Question 4 :
Let  $$A$$  be a matrix such that  $$A \cdot \left[ \begin{array} { c c } { 1 } & { 2 } \\ { 0 } & { 3 } \end{array} \right]$$  is a scalar matrix and  $$| 3 A | = 108 .$$  Then    $$A \cdot \left[ \begin{array} { c c } { 1 } & { 2 } \\ { 0 } & { 3 } \end{array} \right]$$is equal to
Question 5 :
The matrix $$A = \begin{bmatrix}0& 0 &4 \\ 0& 4 & 0\\ 4& 0 & 0\end{bmatrix}$$ is a<br>
Question 6 :
If $$ A= \begin{bmatrix} 1 & 2\end{bmatrix}, B=\begin{bmatrix} 3 & 4\end{bmatrix}$$ then $$A+B=$$
Question 7 :
Construct the matrix of order $$3 \times 2$$ whose elements are given by $$a_{ij} = 2i - j$$
Question 8 :
If P=$$\displaystyle  \begin{bmatrix} 4 & 3 &2   \end{bmatrix}  $$ and Q=$$\displaystyle  \begin{bmatrix} -1 & 2 &3   \end{bmatrix}  $$ then P-Q=
Question 9 :
The order of $$\begin{bmatrix}x & y & z\end{bmatrix}\begin{bmatrix}a & h & g \\ h & b & f \\ g & f & c\end{bmatrix}\begin{bmatrix}x\\ y \\z\end{bmatrix}$$ is
Question 10 :
If every row of a matrix $$A$$ contains $$p$$ elements and its column contains $$q$$ elements, then the order of $$A$$ is
Question 11 :
If the sum of the matrices $$\begin{bmatrix} x \\ x \\ y \end{bmatrix},\begin{bmatrix} y \\ y \\ z \end{bmatrix}$$ and $$\begin{bmatrix} z \\ 0 \\ 0 \end{bmatrix}$$ is the matrix $$\begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix}$$, then what is the value of $$y$$?
Question 12 :
The order of a matrix $$\begin{bmatrix} 2& 5& 7\end{bmatrix} $$ is 
Question 13 :
A square matrix A has 9 elements. What is the possible order of A?
Question 14 :
If $$A=\begin{bmatrix}5 & 2\\ 7 & 4\end{bmatrix}$$ is a $$2\times 2$$ matrix, then $$a_{12}$$=
Question 15 :
If a matrix has $$13$$ elements, then the possible<br>dimensions (orders) of the matrix are
Question 17 :
If $$A$$ and $$B$$ are square matrices such that $$AB = I$$ and $$BA = I$$, then $$B$$ is<br/>
Question 18 :
If for a matrix $$\displaystyle A,{ A }+I=O$$, where $$I$$ is an identity matrix, then $$A$$ equals
Question 19 :
If matrix $$A$$ is of order $$p\times q$$ and matrix $$B$$ is of order $$r\times s$$ then $$A-B$$ will exist if-
Question 20 :
If$$\displaystyle \begin{vmatrix} x & 1 \\ y & 2 \end{vmatrix} $$-$$\displaystyle \begin{vmatrix} y & 1 \\ 8 & 0 \end{vmatrix} $$=$$\displaystyle \begin{vmatrix} 2 & 0 \\ -x & 2 \end{vmatrix} $$ then the values of x and y respectively are
Question 21 :
If $$\displaystyle A=\left [ a_{ij} \right ]_{m\times\:n'}B=\left [ b_{ij} \right ]_{m\times\:n'}$$ then the element $$\displaystyle C_{23}$$ of the matrix $$C=A+B$$, is:
Question 22 :
The entries of a matrix are integers. Adding an integer to all entries on a row or on a column is called an operation. It is given that for infinitely many integers N one can obtain, after a finite number of operations, a table with all entries divisible by N. Prove that one can obtain, after a finite number of operations, the zero matrix.
Question 24 :
If order of $$A+B$$ is $$n \times n$$, then the order of $$AB$$ is
Question 25 :
If $$\begin{bmatrix}x & 0 \\ 1 & y\end{bmatrix} +\begin{bmatrix}-2 & 1 \\ 3 & 4\end{bmatrix} =\begin{bmatrix}3 & 5 \\ 6 & 3\end{bmatrix} -\begin{bmatrix}2 & 4 \\ 2 & 1\end{bmatrix}$$, then
Question 26 :
If $$2A-\begin{bmatrix} 1 & 2 \\ 7 & 4 \end{bmatrix}=\begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}$$, then $$A$$ is equal to-
Question 27 :
The Inverse of a square matrix, if it exist is unique.
Question 28 :
IF A=$$\displaystyle \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} $$ And B=$$\displaystyle \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} $$ then A+B=
Question 30 :
If a matrix has $$m$$ rows and $$n$$ columns then its order is