Question Text
Question 1 :
If a plane passes through the point {tex} ( 1,1,1 ) {/tex} and is perpendicular to the line {tex} \frac { x - 1 } { 3 } = \frac { y - 1 } { 0 } = \frac { z - 1 } { 4 } , {/tex} then its perpendicular distance from the origin is
Question 2 :
The ratio, in which yz-plane divides the line joining (2, 4, 5) and (3, 5, 7), is
Question 3 :
If the angle {tex} \theta {/tex} between the line {tex} \frac { x + 1 } { 1 } = \frac { y - 1 } { 2 } = \frac { z - 2 } { 2 } {/tex} and the plane {tex} 2 x - y + \sqrt { \lambda } z + 4 = 0 {/tex} is such that {tex} \sin \theta = \frac { 1 } { 3 } {/tex} then the value of {tex} \lambda {/tex} is
Question 4 :
What is the angle between the line {tex} 6 \mathrm { x } = 4 \mathrm { y } = 3 \mathrm { z } {/tex} and the plane {tex} 3 \mathrm { x } + 2 \mathrm { y } - 3 \mathrm { z } = 4 ? {/tex}