Question 2 :
Value of $ \displaystyle  \cos 25^{\circ}\cos 20^{\circ}+\sin 25^{\circ}\sin 20^{\circ}  $ is 
Question 3 :
Find the value of $x$ if $\displaystyle \sin 2x=\sin 60^{\circ}\cos 30^{\circ}-\cos 60^{\circ}\sin 30^{\circ}$
Question 4 :
If tan A = 4 /3, tanB = 1/ 7,then A - B =
Question 6 :
If $\theta$ is in the first quadrant and cos $\theta=\frac{3}{5}$, then the value of $\dfrac{5 tan \theta -4cosec \theta}{5 sec\theta-4cot \theta}$ is<br/><br/>
Question 9 :
If $\tan { \theta  }$ =<span>$\dfrac{-4}{3}$</span> then $\sin { \theta  } $ is
Question 10 :
Find $\sqrt { 1-sin\quad A } -\sqrt { 1+sin\quad A } $.
Question 14 :
Let $P$ be the relation defined on the set of all real numbers such that $P={(a,b)/\sec^{2}\ a-\tan^{2}\ b=1}$, then $P$ is
Question 18 :
If $\tan \alpha  = 2$, then the value of $\dfrac{{\sin \alpha }}{{{{\sin }^3}\alpha  + {{\cos }^3}\alpha }}$ is
Question 20 :
If $ \displaystyle \sin \Theta +\cos \Theta =\sqrt{2,} and \Theta $ is actual , then $ \displaystyle \tan \Theta $ is equal to
Question 22 :
If $x\cos { { 60 }^{ o } } -y\cos { { 0 }^{ o } } =3$<br/>$4x\sin { { 360 }^{ o } } -y\cot { { 45 }^{ o } } =2$<br/>then what is the value of $x$?
Question 24 :
The value of $\sin ^{ 2 }{ { 60 }^{ o } } +\tan { { 45 }^{ o } } -\text{cosec} ^{ 2 }{ { 45 }^{ o } } $ is
Question 25 :
Evaluate $8 \sqrt{3} \, \text{cosec}^2 30^o \, \sin \, 60^o \, \cos \, 60^o \, \cos^2 45^o \, \sin \, 45^o \, \tan \, 30^o \, \text{cosec}^3 45^o$
Question 26 :
In which quadrant does the terminal side of the angle $420^0$ lie?<br/>
Question 27 :
The value of $4\cos^{2} \dfrac {\pi}{3} + \sec^{2} \dfrac {\pi}{6} - \sin^{2} \dfrac {\pi}{4}$ is
Question 29 :
In $\sin \theta  = \dfrac{{ - 1}}{{\sqrt 2 }}\& \;\tan \;\theta $ lies in which quadrant?
Question 32 :
If $0<x<\pi$ , and $\cos { x } +\sin { x } =\cfrac { 1 }{ 2 }$, then $\tan { x } $ is -<br><br>