Question 2 :
If $\displaystyle 5\tan \theta =4$, then find the value of $\displaystyle \frac{5\sin \theta -3\cos \theta }{5\sin \theta +2\cos \theta }$. 
Question 3 :
find whether ${ \left( \sin { \theta  } +co\sec { \theta  }  \right)  }^{ 2 }+{ \left( \cos { \theta  } +\sec { \theta  }  \right)  }^{ 2 }=7+\tan ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } $ is true or false.
Question 5 :
The value of $[\dfrac{\tan 30^{o}.\sin 60^{o}.\csc 30^{o}}{\sec 0^{o}.\cot 60^{o}.\cos 30^{o}}]^{4}$ is equal to
Question 6 :
Express$\displaystyle \cos { { 79 }^{ o } } +\sec { { 79 }^{ o } }$ in terms of angles between$\displaystyle { 0 }^{ o }$ and$\displaystyle { 45 }^{ o }$
Question 7 :
$\left( \dfrac { cosA+cosB }{ sinA-sinB }  \right) ^{ 2014 }+\left( \cfrac { sinA+sinB }{ cosA-cosB }  \right) ^{ 2014 }=...........$
Question 8 :
Select and wire the correct answer from the given alternatives. <br/>$\cos \left(\dfrac {3\pi}{2}+\theta \right)=$ ____
Question 9 :
If $ \alpha \epsilon \left[ \frac { \pi  }{ 2 } ,\pi  \right] $ then the value of $\sqrt { 1+sin\alpha  } -\sqrt { 1-sin\alpha  } $ is equal to
Question 11 :
If $A$ and $B$ are complimentary angles, then $\sin A \times \sec B =$
Question 12 :
Evaluate: $\cfrac { \sin { \theta  } \cos { \theta  } \sin { \left( { 90 }^{ o }-\theta  \right)  }  }{ \cos { \left( { 90 }^{ o }-\theta  \right)  }  } +\cfrac { \cos { \theta  } \sin { \theta  } \cos { \left( { 90 }^{ o }-\theta  \right)  }  }{ \sin { \left( { 90 }^{ o }-\theta  \right)  }  } +\cfrac { \sin ^{ 2 }{ { 27 }^{ o } } +\sin ^{ 2 }{ { 63 }^{ o } }  }{ \cos ^{ 2 }{ { 40 }^{ o } } +\cos ^{ 2 }{ { 50 }^{ o } }  } $
Question 15 :
$\cos ^{ 2 }{ \theta  } \left( 1+\tan ^{ 2 }{ \theta  }  \right) +\sin ^{ 2 }{ \theta  } \left( 1+\cot ^{ 2 }{ \theta  }  \right) =2$
Question 16 :
Find the value of : $\dfrac {\cos 38^{\circ} \csc 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}} =$
Question 17 :
Given : $\cos A\, =\, \displaystyle \cfrac{5}{13}$. If $\cot\, A\, +\, \displaystyle \cfrac{1}{\cos A}$ is $\displaystyle \cfrac{181}{m}$, $m$ is: 
Question 19 :
The value of $\displaystyle \frac { 2\cos { { 67 }^{ o } }  }{ \sin { { 23 }^{ o } }  } -\frac { \tan { { 40 }^{ o } }  }{ \cot { { 50 }^{ o } }  } $ is :
Question 20 :
If $7 \theta $ and $2 \theta$ are measure of acute angles such that  sin $7\theta$=cos $2 \theta$, then $2sin 3\theta-\sqrt3$ tan $3\theta$ is ________.
Question 21 :
If $\text{cosec } \theta = \dfrac {13}{5}$, then $\cos \theta = ......$
Question 22 :
If $\displaystyle \frac { \sin { \alpha  }  }{ \sin { \beta  }  } =\frac { \sqrt { 3 }  }{ 2 } $ and $\displaystyle \frac { \cos { \alpha  }  }{ \cos { \beta  }  } =\frac { \sqrt { 5 }  }{ 2 } ,0<\alpha ,\beta <\frac { \pi  }{ 2 } $, then
Question 23 :
If $2 \sec 2\alpha = \tan\beta + \cot \beta$, then one of the value of $\alpha+\beta$ is-
Question 24 :
If $0\leq x, y\leq 180^o$ and $\sin (x-y)=\cos(x+y)=\dfrac 12$, then the values of $x$ and $y$ are given by
Question 25 :
If $\displaystyle \sin x+ \sin^{2}x= 1,$ then the value of $\displaystyle \cos ^{12}x +3\cos ^{10}x+3\cos ^{8}x+\cos ^{6}x-2$ is equal to<br/>