Question 1 :
State True or False.Simplify and express as positive indices:<br/>$(x^ny^{-m})^4.\times (x^3y^{-2})^{-n}$, then answer is $\dfrac{x^ny^{2n}}{y^{4m}}= x^ny^{2n-4m} $.<br/>
Question 2 :
What is the smallest integer n for which $\displaystyle { 25 }^{ n }>{ 5 }^{ 12 }$?
Question 3 :
Which expression is not equivalent to $3\times 3\times 3\times 3\times 3\times 3$?
Question 8 :
If 15 m$^2$n$^3$ is divided by 5m$^2$n$^2$, then the index of quotient is
Question 9 :
$\displaystyle \left [ \left ( -2 \right )^{4}-\left ( 11-1 \right )\right ]\div 3$
Question 17 :
If $\sqrt { { 2 }^{ x } } =16$, then $x=$
Question 19 :
The value of $\left ( \displaystyle \frac {-1}{216} \right )^{-2/3}$ is
Question 24 :
If $\displaystyle x^{x\sqrt{x}}=\left ( x\sqrt{x} \right )^{x}$, then x is equal to
Question 25 :
Suppose ${ 4 }^{ a }=5,{ 5 }^{ b }=6,{ 6 }^{ c }=7,{ 7 }^{ d }=8$, then the value of $abcd$ is ?
Question 27 :
Fill in the blanks<br>If $800 = 8\times 10^8 \times x^{-3/2}$, then x = ____.
Question 28 :
If $3^{n} = n^{6}$, find the value of $ n^{18} $
Question 29 :
If $z=\alpha\sin\theta+\beta\cos\theta$, where $\alpha$ and $\beta$ are positive constants. The maximum value of $z$ is
Question 33 :
If 9$^{x+2}$= 240 + 9$^{x}$ then the value of x is:
Question 34 :
If $a^{b} = 4  -ab$ and $b^{a} = 1$, where $a$ and $b$ are positive integers, find $a$.
Question 35 :
State whether the following statement is true (T) or false (F):<br>$\dfrac{2^3}{7} < \bigg(\dfrac{2}{7}\bigg)^3$<br><br>
Question 37 :
$\displaystyle \frac{1}{\left ( 216 \right )^{\frac{-2}{3}}}+\frac{1}{\left ( 256 \right )^{\frac{-3}{4}}}+\frac{1}{\left ( 243 \right )^{\frac{-1}{5}}}$ is equal to:
Question 38 :
What is the value of b in the equation ${4^{2b-3} = 4^{1-b}}$ ?<br/><br/>
Question 40 :
Solve for x<br/>${5^{x + 1}}\, - {5^{x - 2}} = 620$<br/>
Question 41 :
$\dfrac{2^{n + 4} - 2 \times 2^n}{2 \times 2^{n + 3}} + 2^{-3} = $ ?
Question 42 :
If $2^a = 3^b = 6^c$ then C cannot be equal to
Question 44 :
Let $f(x)=x^{100}$. If $f(x)$ is divided by $x^{2}+x,$ then the remainder is $r(x)$.Find the value of $r(5)$?<br>
Question 45 :
If $a , b , c$ and $d$ are natural numbers such that $a ^ { 3 } = b ^ { 6 } , c ^ { 3 } = d ^ { 4 } ,$ and $d - a = 61 ,$ then thesmallest value of $c - b$ is:
Question 48 :
If $5^{k^2}(25^{2k})(625) = 25\sqrt{5}$ and $k < -1$, find the value of $k$.