Question Text
Question 2 :
What is the smallest integer n for which $\displaystyle { 25 }^{ n }>{ 5 }^{ 12 }$?
Question 7 :
$\displaystyle{10} ^{6}$ is expanded by writing - number of zeros after 1 -
Question 10 :
State True or False.$(27)^{\frac{2}{3}} \div (\dfrac{81}{16})^{-\frac{1}{4}} $ is equal to $13\dfrac{1}{2} $.<br/>
Question 13 :
State true or false: $\displaystyle \left ( \frac{-7}{9} \right )^{2} \div \frac{49}{81} = - 1$
Question 17 :
Simplify:<br>$\left( { 4 }^{ -1 }\times { 3 }^{ -1 } \right) \div { 6 }^{ -1 }$
Question 21 :
If $2^{3x - 2} = 16$, then calculate the value of $x $.
Question 24 :
State whether true or false:<br/>If $81= 3^{n}$, then $n = 5$
Question 27 :
$\displaystyle \frac{1}{\left ( 216 \right )^{\frac{-2}{3}}}+\frac{1}{\left ( 256 \right )^{\frac{-3}{4}}}+\frac{1}{\left ( 243 \right )^{\frac{-1}{5}}}$ is equal to:
Question 28 :
Take $6$ less than a number $n$. If you raise this result to the $5th$ power, it is equal to $32$. Calculate the value of $n$.
Question 30 :
By what number should $ 3^{-4}$ be multiplied, so that the product is $729$?
Question 32 :
After simplication $\displaystyle (243)^{-\frac {3}{5}}$, then answer is $\displaystyle \frac {1}{27}$<br/>State true or false:
Question 35 :
If $3^{n} = n^{6}$, find the value of $ n^{18} $