Question Text
Question 10 :
State 'T' for true and 'F' for false.<br>(i) Every rational number can be expressed with a positive numerator.<br>(ii) $\frac{3}{11}$ cannot be represented as a non-terminating repeating decimal.<br>(iii) If $\frac{p}{q}$ and $\frac{r}{s}$ are two terminating decimals, then $\frac{p}{q}\times\frac{r}{s}$ is also a terminating decimal.<br>(iv) If $\frac{p}{q}$ is non-terminating repeating decimal and $\frac{r}{s}$ is a terminating decimal, then ($\frac{p}{q}\div\frac{r}{s}$)is a terminating decimal.
Question 12 :
The value of $\displaystyle {{{{\left( {0.96} \right)}^3} - {{\left( {0.1} \right)}^3}} \over {{{\left( {0.90} \right)}^2} + \left( {0.096} \right) + 0.01}}$ is 
Question 13 :
If arranged order  in ascending which number is in second place?<br/>$1234.456, 5623.564, 2563.965, 9856.365$
Question 14 :
The denominator of fraction is 6 more than its numerator. If 2 is added to both the numerator and denominator, the fraction becomes $1/2$. Find the fraction.
Question 16 :
Evaluate the following:$ 0.8 \times \displaystyle \dfrac {\dfrac {7}{12}}{\dfrac {5}{24}} $.<br/>
Question 17 :
Simplify: $\displaystyle\frac { \left( 8\displaystyle\frac { 1 }{ 3 } \times\displaystyle\frac { 1 }{ 5 }  \right) -\left( 2\displaystyle\frac { 1 }{ 3 } \div 3\displaystyle\frac { 1 }{ 2 }  \right)  }{ \left( \displaystyle\frac { 7 }{ 10 } \,of\, 1\displaystyle\frac { 1 }{ 4 }  \right) +1\displaystyle\frac { 1 }{ 10 } -\left(\displaystyle \frac { 2 }{ 5 } \div \displaystyle\frac { 5 }{ 6 }  \right)  } $<br/><br/>
Question 20 :
The smallest fraction which should be subtracted from the sum of $1\dfrac{3}{4},\,2 \dfrac{1}{2},\,5 \dfrac{7}{12}, \,3\dfrac{1}{3}$ and $2 \dfrac{1}{4}$ to make the result a whole number, is _______.