Question 1 :
Read out each of the following numbers carefully and specify the natural numbers in it.<br/>$87, 54, 0, -13, -4.7, \sqrt{7}, 2{1}{7}, \sqrt{15}, -{8}{7}, 3\sqrt{7}, 4.807, 0.002, \sqrt{16}$ and $2+\sqrt{3}.$
Question 8 :
The decimal representation of $\dfrac { 93 }{ 1500 }$ will be
Question 10 :
Find the square root of the polynomial using factorisation method: $y^8+\dfrac{1}{y^8}-2$.<br/>
Question 14 :
Express with positive index $\displaystyle \left ( \frac{4}{9} \right )^6 \times \left ( \frac{4}{9} \right )^{-4}$
Question 16 :
Sum of all two digit numbers which when divided by $4$ yield unity as remainder is?
Question 19 :
Simplify and express the result in its simplest form: $5\sqrt{32}\times 2\sqrt [ 3 ]{ 81 } $
Question 20 :
If $a^{m} . a^{n} = a^{mn}$, then $m(n - 2) + n(m - 2)$ is<br>
Question 21 :
If$\displaystyle \sqrt{\frac{\left ( 4+\sqrt{x+3} \right )^{2}}{6}+3}=3$ then x is equal to
Question 22 :
Find the value of: $\left [\dfrac {1}{5^{-2}} + \dfrac {1}{3^{-3}} + \dfrac {1}{2^{-4}}\right ]$
Question 24 :
What is the value of (X) in the following equation?<br>$x^{0.4}\div 16=32\div x^{2.6}$.<br>
Question 25 :
State whether the folloiwng statement is true (T) or false (F):<br>$x^m + x^m = x^{2m}$ where $x$ is a non-zero rational number and $m$ is a positive integer. <br><br>
Question 26 :
State whether the following statement is True or False<br>The conjugate of $\sqrt {3} + \sqrt {2}$ is $\sqrt {2} - \sqrt {3}$
Question 28 :
If $\cfrac { \sqrt { 7 } -1 }{ \sqrt { 7 } +1 } -\cfrac { \sqrt { 7 } +1 }{ \sqrt { 7 } -1 } =a+b\sqrt { 7 } $, then find the values of $a$ and $b$
Question 29 :
The conjugate of the binomial surd $\dfrac {1}{2}x + \dfrac {1}{2}\sqrt {y}$ is?