Question 1 :
<p class="wysiwyg-text-align-left">By which congruency are the following pairs of triangles congruent:</p><p class="wysiwyg-text-align-left">In $\Delta\,ABC$ and $\Delta PQR$, $AB=PQ$, $BC=QR$ and $AC=PR$</p>
Question 2 :
If hypotenuse and an acute angle of one right triangle are equal to the hypotenuse and an acute angle of another right triangle, then the triangles are congruent.
Question 3 :
If $\Delta ABC \cong \DeltaDEF$ by SSS congruence rule then :
Question 5 :
If $\triangle$ $ABC$ $\cong$ $\triangle$ $PRQ$, then $\angle$ $B$ and $PQ$ are respectively equal to
Question 6 :
In a triangle $ABC$, $\angle A={ 40 }^{ o }$ and $AB=AC$, then $ABC$ is ............ triangle.
Question 7 :
State true or false:Two equilateral triangles of side $4\ cm$ each but labeled as $\triangle ABC$ and $\triangle LHN$ are not congruent.
Question 8 :
<p class="wysiwyg-text-align-left">In the parallelogram ABCD, the angles A and C are obtuse. Points X and Y are taken on the diagonal BD such that the angles XAD and YCB are right angles.</p><p class="wysiwyg-text-align-left">Prove that: XA = YC.</p><p class="wysiwyg-text-align-left"><b>State whether the above statement is true or false.</b></p>
Question 9 :
When two triangles have corresponding sides equal in length, then the twotriangles are congruent.
Question 10 :
Which of the following statements is CORRECT?<br>Statement-1 : Two triangles are said to be congruent if two sides and an angle of one triangle are respectively equal to the two sides and an angle of the other.<br>Statement-2 : Two triangles are congruent if two sides and the included angle of the one must be equal to the corresponding two sides and included angle of the other.
Question 12 :
<p class="wysiwyg-text-align-left">ABCD is a parallelogram. The sides AB and AD are produced to E and F respectively, such that AB = BE and AD = DF.</p><p class="wysiwyg-text-align-left">Hence  $\Delta\,BEC\,\cong\,\Delta\,DCF$.</p><p class="wysiwyg-text-align-left"><b>State whether the above statement is true or false.</b></p>
Question 13 :
State true or false:<br/>If two sides and an angle of a triangle are respectively equal to two sides and an angle of another triangle the two triangles are congruent. 
Question 14 :
If $\triangle ABC\cong \triangle PQR$, $\angle B={ 40 }^{ 0 }$ and $\angle C={ 95 }^{ 0 }$, find $\angle P$.
Question 15 :
In $\Delta ABC$, AB = AC and AD is perpendicularto BC. State the property by which $\Delta ADB\, \cong\,\Delta ADC$.
Question 17 :
If two legs of a right triangle are equal to two legs of another right triangle. then the right triangles are congruent.
Question 18 :
If two sides and one angle of a triangle are equal to the two sides and angle of another triangle, then the two triangles are congruent.
Question 19 :
In $\triangle ABC$ and $\triangle DEF$, $\angle B=\angle E,AB=DE,BC=EF$. The two triangles are congruent under ............. axiom.
Question 20 :
In an acute angled triangle $ ABC $, the internal bisector of angle $ A $ meets base $ BC $ at point $ D $. $ DE  \perp  AB $ and $ DF \perp AC $; then the traingle $ AEF $ is an isosceles triangle
Question 21 :
If the diagonal BD of a quadrilateral ABCD bisects both $\angle B$ and $\angle D$ then,<br/>AB$=$AD<br/><br/>
Question 22 :
State true or false:<br/>In parallelogram $ ABCD $.$ E $ and $ F $ are mid-points of the sides $ AB $ and $ CD $ respectively. The line segments $ AF $ and $ BF $ meet the line segments $ ED $ and  $ EC $ at points $ G $ and $ H $ respectively, then$ GEHF $  is a parallelogram. 
Question 23 :
If in two triangles $PQR$ and $DEF$, $PR=\,EF$, $QR=\,DE$ and $PQ=\,FD$, then  $\triangle PQR\cong$ $\triangle$ ___.
Question 24 :
For $\displaystyle \Delta ABC$ and $\displaystyle \Delta PQR$, $AB=PQ, AC=PR,$ and $\displaystyle \angle A=\angle P,$ then:
Question 25 :
<p class="wysiwyg-text-align-left">By which congruency are the following pair of triangles congruent:<br/></p><p class="wysiwyg-text-align-left">In $\Delta\,ABC$ and $\Delta \,DEF$, $\angle\,B = \angle\,E = 90\,^{\circ}, AC = DF$ and $BC = EF.$</p>