Question 1 :
State whether the statement is True or False.Expand: $(2x-\dfrac{1}{2x})^2 $ is equal to $4x^2-2+\dfrac{1}{4x^2} $.<br/>
Question 3 :
Use the product $ (a+b)(a-b) = a^2-b^2$ to evaluate:<br>$21\times 19 $
Question 6 :
State whether the statement is True or False.Evaluate: $(4x^2-5y^2)(4x^2+5y^2)$ is equal to $16x^4-25y^4$.<br/>
Question 10 :
State whether the statement is True or False.Evaluate: $(2a+3)(2a-3)(4a^2+9)$ is equal to $16a^4-81$.<br/>
Question 11 :
If $x+\dfrac { 1 }{ x } =3$, then ${ x }^{ 4 }+\dfrac { 1 }{ x^{ 4 } }$=
Question 14 :
State whether the statement is True or False.Expand: $(a-2b)^2 $ is equal to $a^2-4ab+4b^2$.<br/>
Question 15 :
State whether the statement is True or False.Evaluate: $(6-5xy)(6+5xy)$ is equal to $36-25x^2y^2$.
Question 16 :
$\displaystyle \left ( x-y-z \right )^{2}-\left ( x+y+z \right )^{2}$ is equal to
Question 19 :
If $a\, -\displaystyle \frac{1}{a}\, =\, 8$ and $a\, \neq\, 0$; find $a^{2}\, -\, \displaystyle \frac{1}{a^{2}}$
Question 21 :
State whether the statement is True or False.Find the square: $(a+\dfrac{1}{5a})$, then answer is $a^2+1+\dfrac{1}{4a^2}$.<br/>
Question 22 :
Simplify the following: <br/>$(\sqrt{3}-\sqrt{2})^{2}$ is equal to $5-2\sqrt{6}$<br/> If true then enter $1$ and if false then enter $0$<br/>
Question 23 :
If $\displaystyle \left (x - \frac{1}{x} \right ) = 5$  find the value of $\displaystyle \left (x^4 + \frac{1}{x^4} \right )$.
Question 27 :
State whether the statement is True or False.The square of $(x+3y)$ is equal to $x^2+6xy+9y^2$.<br/>
Question 29 :
State whether the statement is True or False.Evaluate: $(2x-\dfrac{3}{5})(2x+\dfrac{3}{5})$ is equal to $4x^2-\dfrac{9}{25}$.<br/>
Question 30 :
If $\displaystyle x \neq 0$, $\displaystyle x + \dfrac{1}{2x} = p$ and $\displaystyle x - \dfrac{1}{2x} = q$; find a relation between $\displaystyle p$ and $\displaystyle q$.
Question 31 :
State whether the statement is True or False.Evaluate: $(1.6x+0.7y)(1.6x-0.7y)$ is equal to $2.56x^2-0.49y^2$.<br/>
Question 32 :
If $a-b=3$ and $ \displaystyle a^{3}-b^{3}=117 $ then $a+b$ is equal to 
Question 33 :
$(2x + 3y)^{2} = 4x^{2} + 9y^{2} + M$, find M.<br/>
Question 36 :
If $x + \displaystyle \frac{1}{x} = a+ b$ and $x - \displaystyle \frac{1}{x} = a - b$, then
Question 38 :
The product of $(2x^2 -3x + 1)$ and (x -3) is.equal to
Question 39 :
If $\displaystyle a+b=7 \ and \ ab=6 \, ,find \ a^{2}-b^{2}$<br/>
Question 41 :
State whether the statement is True or False.Evaluate: $(a+bc)(a-bc)(a^2+b^2c^2)$ is equal to $a^4-b^4c^4$.<br/>
Question 46 :
State whether the statement is True or False.$\left(3x-\dfrac{1}{2y}\right)\left(3x+\dfrac{1}{2y}\right)$ is equal to $9x^2-\dfrac{1}{4y^2}$.<br/>
Question 47 :
State whether the statement is True or False.Find the square: $(2a-\dfrac{1}{a} )$, then answer is $4a^2-4+\dfrac{1}{a^2} $.<br/>
Question 48 :
If $x+y = 9$ and $xy = 16$ , find the value of $(x^2 + y^2)$.
Question 49 :
If $\displaystyle a^{2} + b^{2} = 34$ and $\displaystyle ab = 12$; find $\displaystyle 7 \left (a - b \right )^{2} - 2\left (a + b \right )^{2}$<br/>
Question 50 :
Use the product $ (a+b)(a-b) = a^2-b^2$ to evaluate:<br/>$103\times 97 $