Question 1 :
A person was asked to state his age in years. His reply was, take my age three years hence multiply it by $3$ and then subtract three times my age three years ago and you will know how old I am. What was the age of the person?
Question 2 :
The difference between a number and one-fifth of it is $100$. What is the number?
Question 3 :
In an examination, a student attempted $15$ questions correctly and secured $40$ marks. If there were two types of questions ($2$ marks and $4$ marks questions) how many questions of $2$ marks did he attempt correctly?
Question 4 :
One-third of one half of one-fifth of a number is $15$ then the number is 
Question 5 :
If $\dfrac { 1 }{ 7 } +\dfrac { x }{ 7 } =3$, calculate the value of $x$.
Question 6 :
In $\displaystyle \frac {a}{8}\, +\, \displaystyle \frac {a}{4}\, =\, 6$, the value of $a$ is:
Question 7 :
A is 2 years older than B who is twice as old as C If the total of the ages of A, B and C be 27 years then how old is B?
Question 8 :
$10$ is subtracted from the product of $x$ and $9$, the result is $80$. The number is 
Question 9 :
Two cats Billy and Kitty together catch $60$ mice. If Billy catches three mice for every two caught by Kitty, then the number of mice caught by Kitty is
Question 11 :
Twenty years ago, my age was $\left (\displaystyle \frac{1}{3}\right)$rd  of <span>what it is now. What is my present age?</span>
Question 12 :
The sum of a number and its half is $84$. Number will be-
Question 13 :
The sum of the digits of a two digit number is $ 6$  and its ten's digit is twice its unit digit. Find the number.
Question 14 :
If five times a number increased by 8 is 83, then the number is:
Question 15 :
If a scooterist drives at the rate of $25\text{ km/h}$ he reaches his destination $7\text{ min}$ late and if he drives at the rate of $30\text{ km/h}$ he reaches his destination $5\text{ min}$ earlier. How far is his destination?  
Question 16 :
When $19$ is subtracted from the product of $p$ and $4$, the result is $17$. <div>Then, the value of $p$ is</div>
Question 17 :
The sum of three consecutive even integers is $72$. Find the smallest number
Question 18 :
The diagonal of a rectangle is thrice its smaller side. What is the ratio of its sides?
Question 19 :
Out of six consecutive numbers the sum of first three is $27$. What is the sum of next three?
Question 20 :
In a piggy bank, the number of $25$ paise coins are five times the number of $50$ paise coins. If there are $120$ coins find the amount in the bank ?
Question 21 :
The angles of a triangle are $2\left ( x-7 \right )$ , $\displaystyle \frac{3}{2}\left ( x-1 \right )$ and $3\left ( x+11 \right )$ . Find $x$ and then show that the triangle is isosceles.
Question 22 :
The numerator of a fraction is $6$ less than the denominator. If $3$ is added to the numerator, the fraction is equal to $\cfrac{2}{3}$, find the original fraction
Question 23 :
Lakshmi is a cashier in a bank. She has notes of denomination of Rs. 20, Rs. 10 and Rs. 5. The ratio of number of these notes is $1 : 2 : 3$. The total cash with Lakshmi is Rs. $1100$. How many notes of Rs. $20$ denomination does she have?
Question 24 :
Three friends, returning from a movie, stopped to eat at a restaurant. After dinner, they paid their bill and noticed a bowl of mints at the front counter. Sita took 1/3 of the mints, but returned four because she has a monetary pang of guilt. Fatima then took 1/4 of what was left but returned three for similar reasons. Eswari then took half of the remainder but threw two back into the ball. The ball has only 17 mints left when the raid was over. How many mints were originally in the bowl?