Question 1 :
IF $$ \displaystyle \tan \theta =\sqrt{2}    $$ , then the value of $$ \displaystyle \theta     $$ is 
Question 4 :
Solve : $$\dfrac { 2tan{ 30 }^{ \circ  } }{ 1+{ tan }^{ 2 }{ 30 }^{ \circ  } } $$
Question 7 :
If $$sec\theta -tan\theta =\dfrac{a}{b},$$ then the value of $$tan\theta $$ is
Question 8 :
If $$\displaystyle  \cos A+\cos ^2A=1$$ then the value of $$\displaystyle  \sin ^{2}A+\sin ^{4}A$$ is
Question 10 :
Given $$tan \theta = 1$$, which of the following is not equal to tan $$\theta$$?
Question 11 :
Which of the following is equal to $$\sin x \sec x$$?
Question 12 :
The angle of elevation and angle of depression both are measured with
Question 13 :
Choose and write the correct alternative.<br>If $$3 \sin \theta = 4 \cos \theta$$ then $$\cot \theta = ?$$<br>
Question 14 :
Solve:$$\displaystyle \sin ^{4}\theta +2\cos ^{2}\theta \left ( 1-\frac{1}{\sec ^{2}\theta } \right )+\cos ^{4}\theta $$
Question 15 :
If$$\displaystyle \cot A=\frac{12}{5}$$ then the value of$$\displaystyle \left ( \sin A+\cos A \right )$$ $$\displaystyle \times cosec$$ $$\displaystyle A$$ is
Question 16 :
Choose the correct option. Justify your choice.<br/>$$\displaystyle 9{ \sec }^{ 2 }A-9{ \tan }^{ 2 }A=$$<br/>
Question 20 :
Simplest form of $$\displaystyle \dfrac{1}{\sqrt{2 + \sqrt{2 + \sqrt{2 + 2 cos 4x}}}}$$ is
Question 21 :
$$\left( \dfrac { cosA+cosB }{ sinA-sinB }  \right) ^{ 2014 }+\left( \cfrac { sinA+sinB }{ cosA-cosB }  \right) ^{ 2014 }=...........$$
Question 22 :
Find the value of $$ \displaystyle  \theta , cos\theta  \sqrt{\sec ^{2}\theta -1}     = 0$$
Question 23 :
Select and wire the correct answer from the given alternatives. <br/>$$\cos \left(\dfrac {3\pi}{2}+\theta \right)=$$ ____
Question 24 :
If $$\theta$$ increases from $$0^0$$ to $$90^o$$, then the value of $$\cos\theta$$: <br/>
Question 26 :
Value of $${ cos }^{ 2 }{ 135 }^{ \circ  }$$
Question 27 :
The given expression is $$\displaystyle \sin { \theta  } \cos { \left( { 90 }^{ o }-\theta  \right)  } +\cos { \theta  } \sin { \left( { 90 }^{ o }-\theta  \right)  } +4 $$ equal to :<br/>
Question 30 :
If $$\displaystyle \tan { \theta  } =\frac { 1 }{ 2 } $$ and $$\displaystyle \tan { \phi  } =\frac { 1 }{ 3 } $$, then the value of $$\displaystyle \theta +\phi $$ is:
Question 31 :
If $$\sec{2A}=\csc{(A-42^\circ)}$$ where $$2A$$ is acute angle then value of $$A$$ is
Question 32 :
If $$ \alpha \epsilon \left[ \frac { \pi  }{ 2 } ,\pi  \right] $$ then the value of $$\sqrt { 1+sin\alpha  } -\sqrt { 1-sin\alpha  } $$ is equal to
Question 33 :
$$\tan \theta$$ increases as $$\theta$$ increases.<br/>If true then enter $$1$$ and if false then enter $$0$$.<br/>
Question 34 :
The given relation is $$(1 + \tan a + \cos a)(\sin a - \cos a )= 2\sin a\tan a - cat\,a\cos a$$
Question 36 :
The expression$$ \displaystyle \left (\tan \Theta +sec\Theta \right )^{2} $$ is equal to
Question 37 :
IF A+B+C=$$ \displaystyle 180^{\circ}  $$ ,then $$  tan A+tanB+tanC $$ is equal to
Question 38 :
If $$3\sin\theta + 5 \cos\theta =5$$, then the value of $$5\sin\theta -3 \cos\theta $$ are 
Question 39 :
Given $$\cos \theta = \dfrac{\sqrt3}{2}$$, which of the following are the possible values of  $$\sin 2 \theta$$?