Page 1 :
Forward Order Positon 1 2 3 4 5 6 7 8 9 10 11 12 2B, , Alphabets A B c D E FE G H ' J K L M, Backward Order Roden | (26 25 24 23 22 21 20 19 18 17 16 15 14, Forward Order Positon | 14 15 16 7 18 19 20 2 22 23 24 25 26, Alphabets N ° Pp Q R s T u v w x ¥ Z, Backward Order Positon 13 12 11 10 9 8 7 6 5 4 3 2 1, , e Backward order position of a letter = 27 — Forward order position of letter, e.g., Backward order position of B = 27 — Forward order position of B=27-—2=25, , 1. By using EJOTY and CFILORUX formulae, we can easily remember the position of, letters of English alphabets., , , , , , , , E J oO T Y c F I L ° R u x, v Vv v v Vv v v v v Vv v Vv v, 5 10 15 20 25 3 6 9 12 15 18 24: 24, , , , , , , , , , EXAMPLE 1. If CUP = 40, then KITE = ?, (a) 10 (b) 20 (c) 30 (a) 45, , Solution (d), , As, Similarly,, , Cc U P K I T E, 3 21 16 11 9 20 Ss, =3+21+ 16=40 =11+9+20+5=45, , EXAMPLE 2. What is the number place of G from right side?, , (a) 10 (b) 20 (c) 25 (d) 30, , Solution (b) 27 -G = 27 ~7 (from left), , =20, , 2. By using V QL G Band X UROLIFC, we can easily remember the position of, letters of alphabet in reverse order., , , , , , , , , , Vv Q L G B x U R oO L ! F c, v v v v v v v v v v v v v, 5 10 15, 20 25, 3 6 9 12 15 18 21 24, , , , , , , , EXAMPLE 3. If BAG = 71, then VICE =?, (a) 69(b) 70 (c) 75 (4) 90, Solution (a), , As, Similarly,, , B A G v I c E, , 25 26 20 5 18 24 22, , > 25+26+20=71 =5+18+244+22=69 (Using backward letter positions), , 3. If the sum of two letters is 27, then both letters are at opposite position of each other., Some pairs of opposite letters can be remembered as given below, , , , TRICK, , Indian Railway’s MaN hits six(CX) BY, LOVE at GT road by DeW PK, , , , , , , , , , , , N, , , , IIR MIN c/|x BLY L [oO V_[E G|T D|W Po[K, 9 [18 13 | 14 3 | 24 25 12 | 15 22 [5 4, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , nN, N, Nv
Page 2 :
p)IN}, , , , ECODING, , EXAMPLE 4. In a certain code, LAKE is written as OZPV. How will BACK be in that same code?, (a) ZYXP (b) ZYPX (c) YZXP (d) YZPX, , Solution (c) As, Similarly,, , 12 1 11 5 2 1 3 11, L A K E B A C K, L L L L 4 L L L, 0 Z P Vv Y Z xX P, 15 26 16 22 25 26 24 16, , EXAMPLE 5. In a certain code, LAKE is written as 121115. How will BACK be in that same code?, (a) 21312 (b)21311 (c)23111 (d) 32111, , Solution (b) As, Similarly,, , L A K E B A Cc K, L L L L L L L L, 12 1 11 5 2 1 3 1