Page 2 : About the Tutorial, C++ is a middle-level programming language developed by Bjarne Stroustrup, starting in 1979 at Bell Labs. C++ runs on a variety of platforms, such as, Windows, Mac OS, and the various versions of UNIX., This tutorial adopts a simple and practical approach to describe the concepts of, C++., Audience, This tutorial has been prepared for the beginners to help them understand the, basic to advanced concepts related to C++., Prerequisites, Before you start practicing with various types of examples given in this, tutorial,we are making an assumption that you are already aware of the basics, of computer program and computer programming language., Copyright & Disclaimer, Copyright 2014 by Tutorials Point (I) Pvt. Ltd., All the content and graphics published in this e-book are the property of, Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,, copy, distribute or republish any contents or a part of contents of this e-book in, any manner without written consent of the publisher., We strive to update the contents of our website and tutorials as timely and as, precisely as possible, however, the contents may contain inaccuracies or errors., Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,, timeliness or completeness of our website or its contents including this tutorial., If you discover any errors on our website or in this tutorial, please notify us at,
[email protected], , Table of Contents, About the Tutorial .................................................................................................................................... i, Audience .................................................................................................................................................. i, Prerequisites ............................................................................................................................................ i, , i
Page 3 :
Copyright & Disclaimer............................................................................................................................. i, Table of Contents ..................................................................................................................................... i, , 1., , OVERVIEW........................................................................................................................... 1, Object-Oriented Programming ................................................................................................................ 1, Standard Libraries ................................................................................................................................... 1, The ANSI Standard .................................................................................................................................. 1, Learning C++............................................................................................................................................ 2, Use of C++ ............................................................................................................................................... 2, , 2., , ENVIORNMENT SETUP......................................................................................................... 3, Try it Option Online ................................................................................................................................. 3, Local Environment Setup......................................................................................................................... 3, Installing GNU C/C++ Compiler: ............................................................................................................... 4, , 3., , BASIC SYNTAX ...................................................................................................................... 6, C++ Program Structure: ........................................................................................................................... 6, Compile & Execute C++ Program: ............................................................................................................ 7, Semicolons & Blocks in C++ ..................................................................................................................... 7, C++ Identifiers ......................................................................................................................................... 8, C++ Keywords.......................................................................................................................................... 8, Trigraphs ................................................................................................................................................. 9, Whitespace in C++ ................................................................................................................................. 10, , 4., , COMMENTS IN C++ ........................................................................................................... 11, , 5., , DATA TYPES ....................................................................................................................... 13, Primitive Built-in Types ......................................................................................................................... 13, typedef Declarations ............................................................................................................................. 15, , ii
Page 4 :
Enumerated Types ................................................................................................................................ 16, , 6., , VARIABLE TYPES ................................................................................................................ 17, Variable Definition in C++ ...................................................................................................................... 17, Variable Declaration in C++ ................................................................................................................... 18, Lvalues and Rvalues .............................................................................................................................. 20, , 7., , VARIABLE SCOPE ............................................................................................................... 21, Local Variables ...................................................................................................................................... 21, Global Variables .................................................................................................................................... 22, Initializing Local and Global Variables ................................................................................................... 23, , 8., , CONSTANTS/LITERALS ....................................................................................................... 24, Integer Literals ...................................................................................................................................... 24, Floating-point Literals ........................................................................................................................... 24, Boolean Literals..................................................................................................................................... 25, Character Literals .................................................................................................................................. 25, String Literals ........................................................................................................................................ 26, Defining Constants ................................................................................................................................ 27, , 9., , MODIFIER TYPES................................................................................................................ 29, Type Qualifiers in C++............................................................................................................................ 30, , 10. STORAGE CLASSES ............................................................................................................. 31, The auto Storage Class .......................................................................................................................... 31, The register Storage Class ..................................................................................................................... 31, The static Storage Class ......................................................................................................................... 31, The extern Storage Class ....................................................................................................................... 33, The mutable Storage Class .................................................................................................................... 34, , 11. OPERATORS ....................................................................................................................... 35, iii
Page 5 :
Arithmetic Operators ............................................................................................................................ 35, Relational Operators ............................................................................................................................. 37, Logical Operators .................................................................................................................................. 40, Bitwise Operators ................................................................................................................................. 41, Assignment Operators........................................................................................................................... 44, Misc Operators...................................................................................................................................... 47, Operators Precedence in C++ ................................................................................................................ 48, , 12. LOOP TYPES ....................................................................................................................... 51, While Loop ............................................................................................................................................ 52, for Loop................................................................................................................................................. 54, do…while Loop ...................................................................................................................................... 56, nested Loops ......................................................................................................................................... 58, Loop Control Statements....................................................................................................................... 60, Break Statement ................................................................................................................................... 61, continue Statement .............................................................................................................................. 63, goto Statement ..................................................................................................................................... 65, The Infinite Loop ................................................................................................................................... 67, , 13. DECISION-MAKING STATEMENTS ...................................................................................... 69, If Statement .......................................................................................................................................... 70, if…else Statement ................................................................................................................................. 72, if...else if...else Statement ..................................................................................................................... 73, Switch Statement .................................................................................................................................. 75, Nested if Statement .............................................................................................................................. 78, The ? : Operator .................................................................................................................................... 81, , 14. FUNCTIONS ....................................................................................................................... 82, Defining a Function ............................................................................................................................... 82, , iv
Page 6 :
Function Declarations ........................................................................................................................... 83, Calling a Function .................................................................................................................................. 84, Function Arguments .............................................................................................................................. 85, Call by Value ......................................................................................................................................... 86, Call by Pointer ....................................................................................................................................... 87, Call by Reference................................................................................................................................... 89, Default Values for Parameters .............................................................................................................. 90, , 15. NUMBERS .......................................................................................................................... 93, Defining Numbers in C++ ....................................................................................................................... 93, Math Operations in C++ ........................................................................................................................ 94, Random Numbers in C++ ....................................................................................................................... 96, , 16. ARRAYS .............................................................................................................................. 98, Declaring Arrays .................................................................................................................................... 98, Initializing Arrays .................................................................................................................................. 98, Accessing Array Elements ...................................................................................................................... 99, Arrays in C++ ....................................................................................................................................... 100, Pointer to an Array.............................................................................................................................. 103, Passing Arrays to Functions ................................................................................................................. 105, Return Array from Functions ............................................................................................................... 107, , 17. STRINGS........................................................................................................................... 111, The C-Style Character String ................................................................................................................ 111, The String Class in C++ ......................................................................................................................... 114, , 18. POINTERS ........................................................................................................................ 116, What are Pointers? ............................................................................................................................. 116, Using Pointers in C++........................................................................................................................... 117, Pointers in C++ .................................................................................................................................... 118, , v
Page 7 :
Null Pointers ....................................................................................................................................... 119, Pointer Arithmetic............................................................................................................................... 120, Pointers vs Arrays ............................................................................................................................... 124, Array of Pointers ................................................................................................................................. 126, Pointer to a Pointer ............................................................................................................................. 128, Passing Pointers to Functions .............................................................................................................. 130, Return Pointer from Functions ............................................................................................................ 132, , 19. REFERENCES .................................................................................................................... 135, References vs Pointers ........................................................................................................................ 135, Creating References in C++ .................................................................................................................. 135, References as Parameters ................................................................................................................... 137, Reference as Return Value .................................................................................................................. 138, , 20. DATE AND TIME............................................................................................................... 141, Current Date and Time ........................................................................................................................ 142, Format Time using struct tm ............................................................................................................... 143, , 21. BASIC INPUT/OUTPUT ..................................................................................................... 145, I/O Library Header Files....................................................................................................................... 145, The Standard Output Stream (cout) .................................................................................................... 145, The Standard Input Stream (cin).......................................................................................................... 146, The Standard Error Stream (cerr) ........................................................................................................ 147, The Standard Log Stream (clog) ........................................................................................................... 148, , 22. DATA STRUCTURES .......................................................................................................... 149, Defining a Structure ............................................................................................................................ 149, Accessing Structure Members ............................................................................................................. 150, , vi
Page 8 :
Structures as Function Arguments....................................................................................................... 151, Pointers to Structures ......................................................................................................................... 153, The typedef Keyword .......................................................................................................................... 155, , 23. CLASSES AND OBJECTS .................................................................................................... 157, C++ Class Definitions ........................................................................................................................... 157, Define C++ Objects .............................................................................................................................. 157, Accessing the Data Members .............................................................................................................. 158, Classes & Objects in Detail .................................................................................................................. 159, Class Access Modifiers ......................................................................................................................... 163, The public Members............................................................................................................................ 164, The private Members .......................................................................................................................... 165, The protected Members...................................................................................................................... 167, Constructor & Destructor .................................................................................................................... 169, Parameterized Constructor ................................................................................................................. 170, The Class Destructor............................................................................................................................ 173, Copy Constructor ................................................................................................................................ 174, Friend Functions .................................................................................................................................. 179, Inline Functions ................................................................................................................................... 181, this Pointer ......................................................................................................................................... 182, Pointer to C++ Classes ......................................................................................................................... 184, Static Members of a Class ................................................................................................................... 185, Static Function Members .................................................................................................................... 187, , 24. INHERITANCE................................................................................................................... 190, Base & Derived Classes........................................................................................................................ 190, Access Control and Inheritance ........................................................................................................... 192, , vii
Page 9 :
Type of Inheritance ............................................................................................................................. 192, Multiple Inheritance ........................................................................................................................... 193, , 25. OVERLOADING (OPERATOR & FUNCTION) ....................................................................... 196, Function Overloading in C++ ............................................................................................................... 196, Operators Overloading in C++ ............................................................................................................. 197, Overloadable/Non-overloadable Operators ........................................................................................ 200, Operator Overloading Examples ......................................................................................................... 201, Unary Operators Overloading ............................................................................................................. 201, Increment (++) and Decrement (- -) Operators .................................................................................... 203, Binary Operators Overloading ............................................................................................................. 205, Relational Operators Overloading ....................................................................................................... 208, Input/Output Operators Overloading.................................................................................................. 210, ++ and - - Operators Overloading ........................................................................................................ 212, Assignment Operators Overloading .................................................................................................... 214, Function Call () Operator Overloading ................................................................................................. 215, Subscripting [ ] Operator Overloading ................................................................................................. 217, Class Member Access Operator - > Overloading .................................................................................. 219, , 26. POLYMORPHISM.............................................................................................................. 223, Virtual Function .................................................................................................................................. 226, Pure Virtual Functions ......................................................................................................................... 226, , 27. DATA ABSTRACTION ........................................................................................................ 227, Access Labels Enforce Abstraction ....................................................................................................... 228, Benefits of Data Abstraction ............................................................................................................... 228, Data Abstraction Example ................................................................................................................... 228, Designing Strategy .............................................................................................................................. 230, , 28. DATA ENCAPSULATION.................................................................................................... 231, viii
Page 10 :
Data Encapsulation Example ............................................................................................................... 232, Designing Strategy .............................................................................................................................. 233, , 29. INTERFACES ..................................................................................................................... 234, Abstract Class Example ....................................................................................................................... 234, Designing Strategy .............................................................................................................................. 236, , 30. FILES AND STREAMS ........................................................................................................ 238, Opening a File ..................................................................................................................................... 238, Closing a File ....................................................................................................................................... 239, Writing to a File ................................................................................................................................... 239, Reading from a File ............................................................................................................................. 239, Read & Write Example ........................................................................................................................ 240, File Position Pointers ........................................................................................................................... 242, , 31. EXCEPTION HANDLING ...................................................................................................... 243, Throwing Exceptions ........................................................................................................................... 244, Catching Exceptions ............................................................................................................................ 244, C++ Standard Exceptions ..................................................................................................................... 246, Define New Exceptions ....................................................................................................................... 247, , 32. DYNAMIC MEMORY ......................................................................................................... 249, The new and delete Operators ............................................................................................................ 249, Dynamic Memory Allocation for Arrays .............................................................................................. 251, Dynamic Memory Allocation for Objects ............................................................................................. 251, , 33. NAMESPACES .................................................................................................................. 253, Defining a Namespace ......................................................................................................................... 253, The using directive .............................................................................................................................. 254, , ix
Page 11 :
Discontiguous Namespaces ................................................................................................................. 256, Nested Namespaces ............................................................................................................................ 256, , 34. TEMPLATES ..................................................................................................................... 258, Function Template .............................................................................................................................. 258, Class Template .................................................................................................................................... 259, , 35. PREPROCESSOR ............................................................................................................... 263, The #define Preprocessor .................................................................................................................... 263, Function-Like Macros .......................................................................................................................... 264, Conditional Compilation ..................................................................................................................... 264, The # and # # Operators ...................................................................................................................... 266, Predefined C++ Macros ....................................................................................................................... 268, , 36. SIGNAL HANDLING .......................................................................................................... 270, The signal() Function ........................................................................................................................... 270, The raise() Function............................................................................................................................. 272, , 37. MULTITHREADING ........................................................................................................... 274, Creating Threads ................................................................................................................................. 274, Terminating Threads ........................................................................................................................... 275, Passing Arguments to Threads ............................................................................................................ 277, Joining and Detaching Threads ............................................................................................................ 278, , 38. WEB PROGRAMMING...................................................................................................... 282, What is CGI? ........................................................................................................................................ 282, Web Browsing ..................................................................................................................................... 282, CGI Architecture Diagram .................................................................................................................... 282, Web Server Configuration ................................................................................................................... 283, First CGI Program ................................................................................................................................ 284, , x
Page 12 :
My First CGI program .......................................................................................................................... 284, HTTP Header ....................................................................................................................................... 285, CGI Environment Variables.................................................................................................................. 285, C++ CGI Library .................................................................................................................................... 289, GET and POST Methods ....................................................................................................................... 289, Passing Information Using GET Method .............................................................................................. 289, Simple URL Example: Get Method ....................................................................................................... 290, Simple FORM Example: GET Method ................................................................................................... 291, Passing Information Using POST Method ............................................................................................ 292, Passing Checkbox Data to CGI Program ............................................................................................... 292, Passing Radio Button Data to CGI Program ......................................................................................... 294, Passing Text Area Data to CGI Program ............................................................................................... 296, Passing Dropdown Box Data to CGI Program....................................................................................... 298, Using Cookies in CGI ............................................................................................................................ 299, How It Works ...................................................................................................................................... 299, Setting up Cookies ............................................................................................................................... 300, Retrieving Cookies............................................................................................................................... 301, File Upload Example ............................................................................................................................ 303, , 39. STL TUTORIAL .................................................................................................................. 306, 40. STANDARD LIBRARY......................................................................................................... 309, The Standard Function Library ............................................................................................................ 309, The Object Oriented Class Library ....................................................................................................... 309, , xi
Page 13 :
1. OVERVIEW, , C++, , C++ is a statically typed, compiled, general-purpose, case-sensitive, free-form, programming language that supports procedural, object-oriented, and generic, programming., C++ is regarded as a middle-level language, as it comprises a combination of, both high-level and low-level language features., C++ was developed by Bjarne Stroustrup starting in 1979 at Bell Labs in Murray, Hill, New Jersey, as an enhancement to the C language and originally named C, with Classes but later it was renamed C++ in 1983., C++ is a superset of C, and that virtually any legal C program is a legal C++, program., Note: A programming language is said to use static typing when type checking, is performed during compile-time as opposed to run-time., Object-Oriented Programming, C++ fully supports object-oriented programming, including the four pillars of, object-oriented development:, , , Encapsulation, , , , Data hiding, , , , Inheritance, , , , Polymorphism, , Standard Libraries, Standard C++ consists of three important parts:, , , The core language giving all the building blocks including variables, data, types and literals, etc., , , , The C++ Standard Library giving a rich set of functions manipulating files,, strings, etc., , , , The Standard Template Library (STL) giving a rich set of methods, manipulating data structures, etc., , The ANSI Standard, The ANSI standard is an attempt to ensure that C++ is portable; that code you, write for Microsoft's compiler will compile without errors, using a compiler on a, Mac, UNIX, a Windows box, or an Alpha., , 1
Page 14 :
C++, , The ANSI standard has been stable for a while, and all the major C++ compiler, manufacturers support the ANSI standard., Learning C++, The most important thing while learning C++ is to focus on concepts., The purpose of learning a programming language is to become a better, programmer; that is, to become more effective at designing and implementing, new systems and at maintaining old ones., C++ supports a variety of programming styles. You can write in the style of, Fortran, C, Smalltalk, etc., in any language. Each style can achieve its aims, effectively while maintaining runtime and space efficiency., Use of C++, C++ is used by hundreds of thousands of programmers in essentially every, application domain., C++ is being highly used to write device drivers and other software that rely on, direct manipulation of hardware under real-time constraints., C++ is widely used for teaching and research because it is clean enough for, successful teaching of basic concepts., Anyone who has used either an Apple Macintosh or a PC running Windows has, indirectly used C++ because the primary user interfaces of these systems are, written in C++., , 2
Page 15 :
2. ENVIORNMENT SETUP, , C++, , Try it Option Online, You really do not need to set up your own environment to start learning C++, programming language. Reason is very simple, we have already set up C++, Programming environment online, so that you can compile and execute all the, available examples online at the same time when you are doing your theory, work. This gives you confidence in what you are reading and to check the result, with different options. Feel free to modify any example and execute it online., Try the following example using our online compiler option available at, http://www.compileonline.com/, #include <iostream>, using namespace std;, , int main(), {, cout << "Hello World";, return 0;, }, For most of the examples given in this tutorial, you will find Try it option in our, website code sections at the top right corner that will take you to the online, compiler. So just make use of it and enjoy your learning., Local Environment Setup, If you are still willing to set up your environment for C++, you need to have the, following two softwares on your computer., , Text Editor:, This will be used to type your program. Examples of few editors include Windows, Notepad, OS Edit command, Brief, Epsilon, EMACS, and vim or vi., Name and version of text editor can vary on different operating systems. For, example, Notepad will be used on Windows and vim or vi can be used on, windows as well as Linux, or UNIX., The files you create with your editor are called source files and for C++ they, typically are named with the extension .cpp, .cp, or .c., A text editor should be in place to start your C++ programming., 3
Page 16 :
C++, , C++ Compiler:, This is an actual C++ compiler, which will be used to compile your source code, into final executable program., Most C++ compilers don't care what extension you give to your source code, but, if you don't specify otherwise, many will use .cpp by default., Most frequently used and free available compiler is GNU C/C++ compiler,, otherwise you can have compilers either from HP or Solaris if you have the, respective Operating Systems., Installing GNU C/C++ Compiler:, , UNIX/Linux Installation:, If you are using Linux or UNIX then check whether GCC is installed on your, system by entering the following command from the command line:, $ g++ -v, If you have installed GCC, then it should print a message such as the following:, Using built-in specs., Target: i386-redhat-linux, Configured with: ../configure --prefix=/usr ......., Thread model: posix, gcc version 4.1.2 20080704 (Red Hat 4.1.2-46), If GCC is not installed, then you will have to install it yourself using the detailed, instructions available at http://gcc.gnu.org/install/ ., , Mac OS X Installation:, If you use Mac OS X, the easiest way to obtain GCC is to download the Xcode, development environment from Apple's website and follow the simple installation, instructions., Xcode is currently available at developer.apple.com/technologies/tools/., , Windows Installation:, To install GCC at Windows you need to install MinGW. To install MinGW, go to, the MinGW homepage, www.mingw.org, and follow the link to the MinGW, download page. Download the latest version of the MinGW installation program, which should be named MinGW-<version>.exe., While installing MinGW, at a minimum, you must install gcc-core, gcc-g++,, binutils, and the MinGW runtime, but you may wish to install more., 4
Page 17 :
C++, , Add the bin subdirectory of your MinGW installation to your PATH environment, variable so that you can specify these tools on the command line by their simple, names., When the installation is complete, you will be able to run gcc, g++, ar, ranlib,, dlltool, and several other GNU tools from the Windows command line., , 5
Page 18 :
3. BASIC SYNTAX, , C++, , When we consider a C++ program, it can be defined as a collection of objects, that communicate via invoking each other's methods. Let us now briefly look, into what a class, object, methods, and instant variables mean., , , Object - Objects have states and behaviors. Example: A dog has states color, name, breed as well as behaviors - wagging, barking, and eating., An object is an instance of a class., , , , Class - A class can be defined as a template/blueprint that describes the, behaviors/states that object of its type support., , , , Methods - A method is basically a behavior. A class can contain many, methods. It is in methods where the logics are written, data is, manipulated and all the actions are executed., , , , Instant Variables - Each object has its unique set of instant variables., An object's state is created by the values assigned to these instant, variables., , C++ Program Structure:, Let us look at a simple code that would print the words Hello World., #include <iostream>, using namespace std;, , // main() is where program execution begins., , int main(), {, cout << "Hello World"; // prints Hello World, return 0;, }, Let us look at the various parts of the above program:, 1. The C++ language defines several headers, which contain information, that is either necessary or useful to your program. For this program, the, header <iostream> is needed., 2. The line using namespace std; tells the compiler to use the std, namespace. Namespaces are a relatively recent addition to C++., 6
Page 19 :
C++, , 3. The next line ‘// main() is where program execution begins.’ is a, single-line comment available in C++. Single-line comments begin with //, and stop at the end of the line., 4. The line int main() is the main function where program execution begins., 5. The next line cout << "This is my first C++ program."; causes the, message "This is my first C++ program" to be displayed on the screen., 6. The next line return 0; terminates main() function and causes it to return, the value 0 to the calling process., Compile & Execute C++ Program:, Let's look at how to save the file, compile and run the program. Please follow the, steps given below:, 1. Open a text editor and add the code as above., 2. Save the file as: hello.cpp, 3. Open a command prompt and go to the directory where you saved the, file., 4. Type 'g++ hello.cpp' and press enter to compile your code. If there are no, errors in your code the command prompt will take you to the next line, and would generate a.out executable file., 5. Now, type 'a.out' to run your program., 6. You will be able to see ' Hello World ' printed on the window., $ g++ hello.cpp, $ ./a.out, Hello World, Make sure that g++ is in your path and that you are running it in the directory, containing file hello.cpp., You can compile C/C++ programs using makefile. For more details, you can, check our ‘Makefile Tutorial’., Semicolons & Blocks in C++, In C++, the semicolon is a statement terminator. That is, each individual, statement must be ended with a semicolon. It indicates the end of one logical, entity., For example, following are three different statements:, x = y;, y = y+1;, 7
Page 20 :
C++, , add(x, y);, A block is a set of logically connected statements that are surrounded by, opening and closing braces. For example:, {, cout << "Hello World"; // prints Hello World, return 0;, }, C++ does not recognize the end of the line as a terminator. For this reason, it, does not matter where you put a statement in a line. For example:, x = y;, y = y+1;, add(x, y);, is the same as, x = y; y = y+1; add(x, y);, C++ Identifiers, A C++ identifier is a name used to identify a variable, function, class, module, or, any other user-defined item. An identifier starts with a letter A to Z or a to z or, an underscore (_) followed by zero or more letters, underscores, and digits (0 to, 9)., C++ does not allow punctuation characters such as @, $, and % within, identifiers., C++, is, a, case-sensitive, programming, language., Thus, Manpower and manpower are two different identifiers in C++., Here are some examples of acceptable identifiers:, mohd, , zara, , abc, , move_name, , a_123, , myname50, , _temp, , j, , a23b9, , retVal, , C++ Keywords, The following list shows the reserved words in C++. These reserved words may, not be used as constant or variable or any other identifier names., asm, , else, , new, , this, , auto, , enum, , operator, , throw, , 8
Page 21 :
C++, , bool, , explicit, , private, , true, , break, , export, , protected, , try, , case, , extern, , public, , typedef, , catch, , false, , register, , typeid, , char, , float, , reinterpret_cast, , typename, , class, , for, , return, , union, , const, , friend, , short, , unsigned, , const_cast, , goto, , signed, , using, , continue, , if, , sizeof, , virtual, , default, , inline, , static, , void, , delete, , int, , static_cast, , volatile, , do, , long, , struct, , wchar_t, , double, , mutable, , switch, , while, , dynamic_cast, , namespace, , template, , Trigraphs, A few characters have an alternative representation, called a trigraph sequence., A trigraph is a three-character sequence that represents a single character and, the sequence always starts with two question marks., Trigraphs are expanded anywhere they appear, including within string literals, and character literals, in comments, and in preprocessor directives., Following are most frequently used trigraph sequences:, Trigraph, , Replacement, , 9
Page 22 :
C++, , ??=, , #, , ??/, , \, , ??', , ^, , ??(, , [, , ??), , ], , ??!, , |, , ??<, , {, , ??>, , }, , ??-, , ~, , All the compilers do not support trigraphs and they are not advised to be used, because of their confusing nature., Whitespace in C++, A line containing only whitespace, possibly with a comment, is known as a blank, line, and C++ compiler totally ignores it., Whitespace is the term used in C++ to describe blanks, tabs, newline characters, and comments. Whitespace separates one part of a statement from another and, enables the compiler to identify where one element in a statement, such as int,, ends and the next element begins. Statement 1:, int age;, In the above statement there must be at least one whitespace character (usually, a space) between int and age for the compiler to be able to distinguish them., Statement 2:, fruit = apples + oranges;, , // Get the total fruit, , In the above statement 2, no whitespace characters are necessary between fruit, and =, or between = and apples, although you are free to include some if you, wish for readability purpose., 10
Page 23 :
4. COMMENTS IN C++, , C++, , Program comments are explanatory statements that you can include in the C++, code. These comments help anyone reading the source code. All programming, languages allow for some form of comments., C++ supports single-line and multi-line comments. All characters available, inside any comment are ignored by C++ compiler., C++ comments start with /* and end with */. For example:, /* This is a comment */, , /* C++ comments can also, * span multiple lines, */, A comment can also start with //, extending to the end of the line. For example:, #include <iostream>, using namespace std;, , main(), {, cout << "Hello World"; // prints Hello World, , return 0;, }, When the above code is compiled, it will ignore // prints Hello World and final, executable will produce the following result:, Hello World, Within a /* and */ comment, // characters have no special meaning. Within a //, comment, /* and */ have no special meaning. Thus, you can "nest" one kind of, comment within the other kind. For example:, /* Comment out printing of Hello World:, , 11
Page 24 :
C++, , cout << "Hello World"; // prints Hello World, , */, , 12
Page 25 :
5. DATA TYPES, , C++, , While writing program in any language, you need to use various variables to, store various information. Variables are nothing but reserved memory locations, to store values. This means that when you create a variable you reserve some, space in memory., You may like to store information of various data types like character, wide, character, integer, floating point, double floating point, boolean etc. Based on, the data type of a variable, the operating system allocates memory and decides, what can be stored in the reserved memory., Primitive Built-in Types, C++ offers the programmer a rich assortment of built-in as well as user defined, data types. Following table lists down seven basic C++ data types:, Type, , Keyword, , Boolean, , bool, , Character, , char, , Integer, , int, , Floating point, , float, , Double floating point, , double, , Valueless, , void, , Wide character, , wchar_t, , Several of the basic types can be modified using one or more of these type, modifiers:, , , signed, , , , unsigned, , , , short, , , , long, 13
Page 26 :
C++, , The following table shows the variable type, how much memory it takes to store, the value in memory, and what is maximum and minimum value which can be, stored in such type of variables., Type, , Typical Bit Width, , Typical Range, , char, , 1byte, , -127 to 127 or 0 to 255, , unsigned char, , 1byte, , 0 to 255, , signed char, , 1byte, , -127 to 127, , int, , 4bytes, , -2147483648 to 2147483647, , unsigned int, , 4bytes, , 0 to 4294967295, , signed int, , 4bytes, , -2147483648 to 2147483647, , short int, , 2bytes, , -32768 to 32767, , unsigned short int, , Range, , 0 to 65,535, , signed short int, , Range, , -32768 to 32767, , long int, , 4bytes, , -2,147,483,647 to 2,147,483,647, , signed long int, , 4bytes, , same as long int, , unsigned long int, , 4bytes, , 0 to 4,294,967,295, , float, , 4bytes, , +/- 3.4e +/- 38 (~7 digits), , double, , 8bytes, , +/- 1.7e +/- 308 (~15 digits), , long double, , 8bytes, , +/- 1.7e +/- 308 (~15 digits), , wchar_t, , 2 or 4 bytes, , 1 wide character, , The size of variables might be different from those shown in the above table,, depending on the compiler and the computer you are using., 14
Page 27 :
C++, , Following is the example, which will produce correct size of various data types, on your computer., #include <iostream>, using namespace std;, , int main(), {, cout << "Size of char : " << sizeof(char) << endl;, cout << "Size of int : " << sizeof(int) << endl;, cout << "Size of short int : " << sizeof(short int) << endl;, cout << "Size of long int : " << sizeof(long int) << endl;, cout << "Size of float : " << sizeof(float) << endl;, cout << "Size of double : " << sizeof(double) << endl;, cout << "Size of wchar_t : " << sizeof(wchar_t) << endl;, return 0;, }, This example uses endl, which inserts a new-line character after every line and, << operator is being used to pass multiple values out to the screen. We are also, using sizeof() function to get size of various data types., When the above code is compiled and executed, it produces the following result, which can vary from machine to machine:, Size of char : 1, Size of int : 4, Size of short int : 2, Size of long int : 4, Size of float : 4, Size of double : 8, Size of wchar_t : 4, typedef Declarations, You can create a new name for an existing type using typedef. Following is the, simple syntax to define a new type using typedef:, typedef type newname;, For example, the following tells the compiler that feet is another name for int:, 15
Page 28 :
C++, , typedef int feet;, Now, the following declaration is perfectly legal and creates an integer variable, called distance:, feet distance;, Enumerated Types, An enumerated type declares an optional type name and a set of zero or more, identifiers that can be used as values of the type. Each enumerator is a constant, whose type is the enumeration., Creating an enumeration requires the use of the keyword enum. The general, form of an enumeration type is:, enum enum-name { list of names } var-list;, Here, the enum-name is the enumeration's type name. The list of names is, comma separated., For example, the following code defines an enumeration of colors called colors, and the variable c of type color. Finally, c is assigned the value "blue"., enum color { red, green, blue } c;, c = blue;, By default, the value of the first name is 0, the second name has the value 1,, and the third has the value 2, and so on. But you can give a name, a specific, value, by, adding, an, initializer., For, example,, in, the, following, enumeration, green will have the value 5., enum color { red, green=5, blue };, Here, blue will have a value of 6 because each name will be one greater than, the one that precedes it., , 16
Page 29 :
6. VARIABLE TYPES, , C++, , A variable provides us with named storage that our programs can manipulate., Each variable in C++ has a specific type, which determines the size and layout, of the variable's memory; the range of values that can be stored within that, memory; and the set of operations that can be applied to the variable., The name of a variable can be composed of letters, digits, and the underscore, character. It must begin with either a letter or an underscore. Upper and, lowercase letters are distinct because C++ is case-sensitive:, There are following basic types of variable in C++ as explained in last chapter:, Type, , Description, , bool, , Stores either value true or false., , char, , Typically a single octet (one byte). This is an integer, type., , int, , The most natural size of integer for the machine., , float, , A single-precision floating point value., , double, , A double-precision floating point value., , void, , Represents the absence of type., , wchar_t, , A wide character type., , C++ also allows to define various other types of variables, which we will cover in, subsequent chapters like Enumeration, Pointer, Array, Reference, Data, structures, and Classes., Following section will cover how to define, declare and use various types of, variables., Variable Definition in C++, A variable definition tells the compiler where and how much storage to create for, the variable. A variable definition specifies a data type, and contains a list of one, or more variables of that type as follows:, 17
Page 30 :
C++, , type variable_list;, Here, type must be a valid C++ data type including char, w_char, int, float,, double, bool or any user-defined object, etc., and variable_list may consist of, one or more identifier names separated by commas. Some valid declarations are, shown here:, int, , i, j, k;, , char, , c, ch;, , float, , f, salary;, , double d;, The line int i, j, k; both declares and defines the variables i, j and k; which, instructs the compiler to create variables named i, j and k of type int., Variables can be initialized (assigned an initial value) in their declaration. The, initializer consists of an equal sign followed by a constant expression as follows:, type variable_name = value;, Some examples are:, extern int d = 3, f = 5;, , // declaration of d and f., , int d = 3, f = 5;, , // definition and initializing d and f., , byte z = 22;, , // definition and initializes z., , char x = 'x';, , // the variable x has the value 'x'., , For definition without an initializer: variables with static storage duration are, implicitly initialized with NULL (all bytes have the value 0); the initial value of all, other variables is undefined., Variable Declaration in C++, A variable declaration provides assurance to the compiler that there is one, variable existing with the given type and name so that compiler proceed for, further compilation without needing complete detail about the variable. A, variable declaration has its meaning at the time of compilation only, compiler, needs actual variable declaration at the time of linking of the program., A variable declaration is useful when you are using multiple files and you define, your variable in one of the files which will be available at the time of linking of, the program. You will use extern keyword to declare a variable at any place., Though you can declare a variable multiple times in your C++ program, but it, can be defined only once in a file, a function or a block of code., , Example:, 18
Page 31 :
C++, , Try the following example where a variable has been declared at the top, but it, has been defined inside the main function:, #include <iostream>, using namespace std;, , // Variable declaration:, extern int a, b;, extern int c;, extern float f;, , int main (), {, // Variable definition:, int a, b;, int c;, float f;, , // actual initialization, a = 10;, b = 20;, c = a + b;, , cout << c << endl ;, , f = 70.0/3.0;, cout << f << endl ;, , return 0;, }, , When the above code is compiled and executed, it produces the following result:, 30, 23.3333, 19
Page 32 :
C++, , Same concept applies on function declaration where you provide a function, name at the time of its declaration and its actual definition can be given, anywhere else. For example:, // function declaration, int func();, , int main(), {, // function call, int i = func();, }, , // function definition, int func(), {, return 0;, }, Lvalues and Rvalues, There are two kinds of expressions in C++:, , , lvalue : Expressions that refer to a memory location is called "lvalue", expression. An lvalue may appear as either the left-hand or right-hand, side of an assignment., , , , rvalue : The term rvalue refers to a data value that is stored at some, address in memory. An rvalue is an expression that cannot have a value, assigned to it which means an rvalue may appear on the right- but not, left-hand side of an assignment., , Variables are lvalues and so may appear on the left-hand side of an assignment., Numeric literals are rvalues and so may not be assigned and cannot appear on, the left-hand side. Following is a valid statement:, int g = 20;, But the following is not a valid statement and would generate compile-time, error:, 10 = 20;, , 20
Page 33 :
7. VARIABLE SCOPE, , C++, , A scope is a region of the program and broadly speaking there are three places,, where variables can be declared:, , , Inside a function or a block which is called local variables,, , , , In the definition of function parameters which is called formal parameters., , , , Outside of all functions which is called global variables., , We will learn what a function is, and it's parameter in subsequent chapters. Here, let us explain what local and global variables are., Local Variables, Variables that are declared inside a function or block are local variables. They, can be used only by statements that are inside that function or block of code., Local variables are not known to functions outside their own. Following is the, example using local variables:, #include <iostream>, using namespace std;, , int main (), {, // Local variable declaration:, int a, b;, int c;, , // actual initialization, a = 10;, b = 20;, c = a + b;, , cout << c;, , return 0;, }, 21
Page 34 :
C++, , Global Variables, Global variables are defined outside of all the functions, usually on top of the, program. The global variables will hold their value throughout the life-time of, your program., A global variable can be accessed by any function. That is, a global variable is, available for use throughout your entire program after its declaration. Following, is the example using global and local variables:, #include <iostream>, using namespace std;, , // Global variable declaration:, int g;, , int main (), {, // Local variable declaration:, int a, b;, , // actual initialization, a = 10;, b = 20;, g = a + b;, , cout << g;, , return 0;, }, A program can have same name for local and global variables but value of local, variable inside a function will take preference. For example:, #include <iostream>, using namespace std;, , // Global variable declaration:, int g = 20;, 22
Page 35 :
C++, , int main (), {, // Local variable declaration:, int g = 10;, , cout << g;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, 10, Initializing Local and Global Variables, When a local variable is defined, it is not initialized by the system, you must, initialize it yourself. Global variables are initialized automatically by the system, when you define them as follows:, Data Type, , Initializer, , int, , 0, , char, , '\0', , float, , 0, , double, , 0, , pointer, , NULL, , It is a good programming practice to initialize variables properly, otherwise, sometimes program would produce unexpected result., , 23
Page 36 :
8. CONSTANTS/LITERALS, , C++, , Constants refer to fixed values that the program may not alter and they are, called literals., Constants can be of any of the basic data types and can be divided into Integer, Numerals, Floating-Point Numerals, Characters, Strings and Boolean Values., Again, constants are treated just like regular variables except that their values, cannot be modified after their definition., Integer Literals, An integer literal can be a decimal, octal, or hexadecimal constant. A prefix, specifies the base or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for, decimal., An integer literal can also have a suffix that is a combination of U and L, for, unsigned and long, respectively. The suffix can be uppercase or lowercase and, can be in any order., Here are some examples of integer literals:, 212, , // Legal, , 215u, , // Legal, , 0xFeeL, , // Legal, , 078, , // Illegal: 8 is not an octal digit, , 032UU, , // Illegal: cannot repeat a suffix, , Following are other examples of various types of Integer literals:, 85, , // decimal, , 0213, , // octal, , 0x4b, , // hexadecimal, , 30, , // int, , 30u, , // unsigned int, , 30l, , // long, , 30ul, , // unsigned long, , Floating-point Literals, A floating-point literal has an integer part, a decimal point, a fractional part, and, an exponent part. You can represent floating point literals either in decimal form, or exponential form., 24
Page 37 :
C++, , While representing using decimal form, you must include the decimal point, the, exponent, or both and while representing using exponential form, you must, include the integer part, the fractional part, or both. The signed exponent is, introduced by e or E., Here are some examples of floating-point literals:, 3.14159, , // Legal, , 314159E-5L, , // Legal, , 510E, , // Illegal: incomplete exponent, , 210f, , // Illegal: no decimal or exponent, , .e55, , // Illegal: missing integer or fraction, , Boolean Literals, There are two Boolean literals and they are part of standard C++ keywords:, , , A value of true representing true., , , , A value of false representing false., , You should not consider the value of true equal to 1 and value of false equal to, 0., Character Literals, Character literals are enclosed in single quotes. If the literal begins with L, (uppercase only), it is a wide character literal (e.g., L'x') and should be stored, in wchar_t type of variable. Otherwise, it is a narrow character literal (e.g., 'x'), and can be stored in a simple variable of char type., A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g.,, '\t'), or a universal character (e.g., '\u02C0')., There are certain characters in C++ when they are preceded by a backslash, they will have special meaning and they are used to represent like newline (\n), or tab (\t). Here, you have a list of some of such escape sequence codes:, Escape sequence, , Meaning, , \\, , \ character, , \', , ' character, , \", , " character, , \?, , ? character, 25
Page 38 :
C++, , \a, , Alert or bell, , \b, , Backspace, , \f, , Form feed, , \n, , Newline, , \r, , Carriage return, , \t, , Horizontal tab, , \v, , Vertical tab, , \ooo, , Octal number of one to three digits, , \xhh . . ., , Hexadecimal number of one or more digits, , Following is the example to show a few escape sequence characters:, #include <iostream>, using namespace std;, , int main(), {, cout << "Hello\tWorld\n\n";, return 0;, }, , When the above code is compiled and executed, it produces the following result:, Hello, , World, , String Literals, String literals are enclosed in double quotes. A string contains characters that, are similar to character literals: plain characters, escape sequences, and, universal characters., 26
Page 39 :
C++, , You can break a long line into multiple lines using string literals and separate, them using whitespaces., Here are some examples of string literals. All the three forms are identical, strings., "hello, dear", , "hello, \, , dear", , "hello, " "d" "ear", Defining Constants, There are two simple ways in C++ to define constants:, , , Using #define preprocessor., , , , Using const keyword., , The #define Preprocessor, Following is the form to use #define preprocessor to define a constant:, #define identifier value, Following example explains it in detail:, #include <iostream>, using namespace std;, , #define LENGTH 10, #define WIDTH, , 5, , #define NEWLINE '\n', , int main(), {, , int area;, , area = LENGTH * WIDTH;, 27
Page 40 :
C++, , cout << area;, cout << NEWLINE;, return 0;, }, When the above code is compiled and executed, it produces the following result:, 50, , The const Keyword, You can use const prefix to declare constants with a specific type as follows:, const type variable = value;, Following example explains it in detail:, #include <iostream>, using namespace std;, , int main(), {, const int, , LENGTH = 10;, , const int, , WIDTH, , = 5;, , const char NEWLINE = '\n';, int area;, , area = LENGTH * WIDTH;, cout << area;, cout << NEWLINE;, return 0;, }, When the above code is compiled and executed, it produces the following result:, 50, Note that it is a good programming practice to define constants in CAPITALS., , 28
Page 41 :
C++, , 9. MODIFIER TYPES, , C++ allows the char, int, and double data types to have modifiers preceding, them. A modifier is used to alter the meaning of the base type so that it more, precisely fits the needs of various situations., The data type modifiers are listed here:, , , signed, , , , unsigned, , , , long, , , , short, , The modifiers signed, unsigned, long, and short can be applied to integer base, types. In addition, signed and unsigned can be applied to char, and long can, be applied to double., The, modifiers signed and unsigned can, also, be, used, to long or short modifiers. For example, unsigned long int., , as, , prefix, , C++, allows, a, shorthand, notation, for, declaring unsigned,, short, or long integers. You can simply use the word unsigned, short, or long,, without int. It automatically implies int. For example, the following two, statements both declare unsigned integer variables., unsigned x;, unsigned int y;, To understand the difference between the way signed and unsigned integer, modifiers are interpreted by C++, you should run the following short program:, #include <iostream>, using namespace std;, , /* This program shows the difference between, * signed and unsigned integers., */, int main(), {, short int i;, , // a signed short integer, , short unsigned int j;, , // an unsigned short integer, 29
Page 42 :
C++, , j = 50000;, , i = j;, cout << i << " " << j;, , return 0;, }, When this program is run, following is the output:, -15536 50000, The above result is because the bit pattern that represents 50,000 as a short, unsigned integer is interpreted as -15,536 by a short., Type Qualifiers in C++, The type qualifiers provide additional information about the variables they, precede., Qualifier, , Meaning, , const, , Objects of type const cannot be changed by your program during, execution, , volatile, , The modifier volatile tells the compiler that a variable's value may, be changed in ways not explicitly specified by the program., , restrict, , A pointer qualified by restrict is initially the only means by which, the object it points to can be accessed. Only C99 adds a new type, qualifier called restrict., , 30
Page 43 :
10. STORAGE CLASSES, , C++, , A storage class defines the scope (visibility) and life-time of variables and/or, functions within a C++ Program. These specifiers precede the type that they, modify. There are following storage classes, which can be used in a C++, Program, , , auto, , , , register, , , , static, , , , extern, , , , mutable, , The auto Storage Class, The auto storage class is the default storage class for all local variables., {, int mount;, auto int month;, }, The example above defines two variables with the same storage class, auto can, only be used within functions, i.e., local variables., The register Storage Class, The register storage class is used to define local variables that should be stored, in a register instead of RAM. This means that the variable has a maximum size, equal to the register size (usually one word) and can't have the unary '&', operator applied to it (as it does not have a memory location)., {, register int, , miles;, , }, The register should only be used for variables that require quick access such as, counters. It should also be noted that defining 'register' does not mean that the, variable will be stored in a register. It means that it MIGHT be stored in a, register depending on hardware and implementation restrictions., The static Storage Class, 31
Page 44 :
C++, , The static storage class instructs the compiler to keep a local variable in, existence during the life-time of the program instead of creating and destroying, it each time it comes into and goes out of scope. Therefore, making local, variables static allows them to maintain their values between function calls., The static modifier may also be applied to global variables. When this is done, it, causes that variable's scope to be restricted to the file in which it is declared., In C++, when static is used on a class data member, it causes only one copy of, that member to be shared by all objects of its class., #include <iostream>, , // Function declaration, void func(void);, , static int count = 10; /* Global variable */, , main(), {, while(count--), {, func();, }, return 0;, }, // Function definition, void func( void ), {, static int i = 5; // local static variable, i++;, std::cout << "i is " << i ;, std::cout << " and count is " << count << std::endl;, }, When the above code is compiled and executed, it produces the following result:, i is 6 and count is 9, i is 7 and count is 8, 32
Page 45 :
C++, , i is 8 and count is 7, i is 9 and count is 6, i is 10 and count is 5, i is 11 and count is 4, i is 12 and count is 3, i is 13 and count is 2, i is 14 and count is 1, i is 15 and count is 0, The extern Storage Class, The extern storage class is used to give a reference of a global variable that is, visible to ALL the program files. When you use 'extern' the variable cannot be, initialized as all it does is point the variable name at a storage location that has, been previously defined., When you have multiple files and you define a global variable or function, which, will be used in other files also, then extern will be used in another file to give, reference of defined variable or function. Just for understanding extern is used to, declare a global variable or function in another file., The extern modifier is most commonly used when there are two or more files, sharing the same global variables or functions as explained below., , First File: main.cpp, #include <iostream>, , int count ;, extern void write_extern();, , main(), {, count = 5;, write_extern();, }, , Second File: support.cpp, #include <iostream>, , 33
Page 46 :
C++, , extern int count;, , void write_extern(void), {, std::cout << "Count is " << count << std::endl;, }, Here, extern keyword is being used to declare count in another file. Now compile, these two files as follows:, $g++ main.cpp support.cpp -o write, This will produce write executable program, try to execute write and check the, result as follows:, $./write, 5, The mutable Storage Class, The mutable specifier applies only to class objects, which are discussed later in, this tutorial. It allows a member of an object to override const member function., That is, a mutable member can be modified by a const member function., , 34
Page 47 :
11. OPERATORS, , C++, , An operator is a symbol that tells the compiler to perform specific mathematical, or logical manipulations. C++ is rich in built-in operators and provide the, following types of operators:, , , Arithmetic Operators, , , , Relational Operators, , , , Logical Operators, , , , Bitwise Operators, , , , Assignment Operators, , , , Misc Operators, , This chapter will examine the arithmetic, relational, logical, bitwise, assignment, and other operators one by one., Arithmetic Operators, There are following arithmetic operators supported by C++ language:, Assume variable A holds 10 and variable B holds 20, then:, , Operator, , Description, , Example, , +, , Adds two operands, , A + B will give 30, , -, , Subtracts second operand from, the first, , A - B will give -10, , *, , Multiplies both operands, , A * B will give 200, , /, , Divides, numerator, numerator, , %, , Modulus, Operator, and, remainder of after an integer, division, , by, , de-, , B / A will give 2, , B % A will give 0, , 35
Page 48 :
C++, , ++, , Increment operator, increases, integer value by one, , A++ will give 11, , --, , Decrement operator, decreases, integer value by one, , A-- will give 9, , Try the following example to understand all the arithmetic operators available in, C++., Copy and paste the following C++ program in test.cpp file and compile and run, this program., #include <iostream>, using namespace std;, , main(), {, int a = 21;, int b = 10;, int c ;, , c = a + b;, cout << "Line 1 - Value of c is :" << c << endl ;, c = a - b;, cout << "Line 2 - Value of c is, , :" << c << endl ;, , c = a * b;, cout << "Line 3 - Value of c is :" << c << endl ;, c = a / b;, cout << "Line 4 - Value of c is, , :" << c << endl ;, , c = a % b;, cout << "Line 5 - Value of c is, , :" << c << endl ;, , c = a++;, cout << "Line 6 - Value of c is :" << c << endl ;, c = a--;, cout << "Line 7 - Value of c is, , :" << c << endl ;, , return 0;, 36
Page 49 :
C++, , }, When the above code is compiled and executed, it produces the following result:, Line 1 - Value of c is :31, Line 2 - Value of c is, , :11, , Line 3 - Value of c is :210, Line 4 - Value of c is, , :2, , Line 5 - Value of c is, , :1, , Line 6 - Value of c is :21, Line 7 - Value of c is, , :22, , Relational Operators, There are following relational operators supported by C++ language, Assume variable A holds 10 and variable B holds 20, then:, Operator, , Description, , Example, , ==, , Checks if the values of two, operands are equal or not, if, yes then condition becomes, true., , (A == B) is not true., , !=, , Checks if the values of two, operands are equal or not, if, values are not equal then, condition becomes true., , (A != B) is true., , >, , Checks if the value of left, operand is greater than the, value of right operand, if yes, then condition becomes true., , (A > B) is not true., , <, , Checks if the value of left, operand is less than the value, of right operand, if yes then, condition becomes true., , (A < B) is true., , >=, , Checks, , (A >= B) is not true., , if, , the, , value, , of, , left, , 37
Page 50 :
C++, , operand is greater than or equal, to the value of right operand, if, yes then condition becomes, true., <=, , Checks if, operand is, the value, yes then, true., , the value of left, less than or equal to, of right operand, if, condition becomes, , (A <= B) is true., , Try the following example to understand all the relational operators available in, C++., Copy and paste the following C++ program in test.cpp file and compile and run, this program., #include <iostream>, using namespace std;, , main(), {, int a = 21;, int b = 10;, int c ;, , if( a == b ), {, cout << "Line 1 - a is equal to b" << endl ;, }, else, {, cout << "Line 1 - a is not equal to b" << endl ;, }, if ( a < b ), {, cout << "Line 2 - a is less than b" << endl ;, 38
Page 51 :
C++, , }, else, {, cout << "Line 2 - a is not less than b" << endl ;, }, if ( a > b ), {, cout << "Line 3 - a is greater than b" << endl ;, }, else, {, cout << "Line 3 - a is not greater than b" << endl ;, }, /* Let's change the values of a and b */, a = 5;, b = 20;, if ( a <= b ), {, cout << "Line 4 - a is either less than \, or equal to, , b" << endl ;, , }, if ( b >= a ), {, cout << "Line 5 - b is either greater than \, or equal to b" << endl ;, }, return 0;, }, When the above code is compiled and executed, it produces the following result:, Line 1 - a is not equal to b, Line 2 - a is not less than b, Line 3 - a is greater than b, Line 4 - a is either less than or equal to, , b, 39
Page 52 :
C++, , Line 5 - b is either greater than or equal to b, , Logical Operators, There are following logical operators supported by C++ language., Assume variable A holds 1 and variable B holds 0, then:, Operator, , Description, , Example, , &&, , Called Logical AND operator. If, both the operands are non-zero,, then condition becomes true., , (A && B) is false., , ||, , Called Logical OR Operator. If, any of the two operands is nonzero, then condition becomes, true., , (A || B) is true., , !, , Called Logical NOT Operator., Use to reverses the logical state, of its operand. If a condition is, true, then Logical NOT operator, will make false., , !(A && B) is true., , Try the following example to understand all the logical operators available in, C++., Copy and paste the following C++ program in test.cpp file and compile and run, this program., #include <iostream>, using namespace std;, , main(), {, int a = 5;, int b = 20;, int c ;, , 40
Page 53 :
C++, , if ( a && b ), {, cout << "Line 1 - Condition is true"<< endl ;, }, if ( a || b ), {, cout << "Line 2 - Condition is true"<< endl ;, }, /* Let's change the values of, , a and b */, , a = 0;, b = 10;, if ( a && b ), {, cout << "Line 3 - Condition is true"<< endl ;, }, else, {, cout << "Line 4 - Condition is not true"<< endl ;, }, if ( !(a && b) ), {, cout << "Line 5 - Condition is true"<< endl ;, }, return 0;, }, When the above code is compiled and executed, it produces the following result:, Line 1 - Condition is true, Line 2 - Condition is true, Line 4 - Condition is not true, Line 5 - Condition is true, , Bitwise Operators, 41
Page 54 :
C++, , Bitwise operator works on bits and perform bit-by-bit operation. The truth tables, for &, |, and ^ are as follows:, p, , q, , p&q, , p|q, , p^q, , 0, , 0, , 0, , 0, , 0, , 0, , 1, , 0, , 1, , 1, , 1, , 1, , 1, , 1, , 0, , 1, , 0, , 0, , 1, , 1, , Assume if A = 60; and B = 13; now in binary format they will be as follows:, A = 0011 1100, B = 0000 1101, ----------------A&B = 0000 1100, A|B = 0011 1101, A^B = 0011 0001, ~A = 1100 0011, The Bitwise operators supported by C++ language are listed in the following, table. Assume variable A holds 60 and variable B holds 13, then:, Operator, , Description, , Example, , &, , Binary AND Operator copies a, bit to the result if it exists in, both operands., , (A & B) will give 12 which is, 0000 1100, , |, , Binary OR Operator copies a bit, if it exists in either operand., , (A | B) will give 61 which is, 0011 1101, , ^, , Binary XOR Operator copies the, bit if it is set in one operand but, not both., , (A ^ B) will give 49 which is, 0011 0001, , 42
Page 55 :
C++, , ~, , Binary, Ones, Complement, Operator is unary and has the, effect of 'flipping' bits., , (~A ) will give -61 which is, 1100 0011 in 2's complement, form due to a signed binary, number., , <<, , Binary Left Shift Operator. The, left operands value is moved, left by the number of bits, specified by the right operand., , A << 2 will give 240 which is, 1111 0000, , >>, , Binary Right Shift Operator. The, left operands value is moved, right by the number of bits, specified by the right operand., , A >> 2 will give 15 which is, 0000 1111, , Try the following example to understand all the bitwise operators available in, C++., Copy and paste the following C++ program in test.cpp file and compile and run, this program., #include <iostream>, using namespace std;, , main(), {, unsigned int a = 60;, , // 60 = 0011 1100, , unsigned int b = 13;, , // 13 = 0000 1101, , int c = 0;, , c = a & b;, , // 12 = 0000 1100, , cout << "Line 1 - Value of c is : " << c << endl ;, , c = a | b;, , // 61 = 0011 1101, , cout << "Line 2 - Value of c is: " << c << endl ;, , c = a ^ b;, , // 49 = 0011 0001, , cout << "Line 3 - Value of c is: " << c << endl ;, 43
Page 56 :
C++, , c = ~a;, , // -61 = 1100 0011, , cout << "Line 4 - Value of c is: " << c << endl ;, , c = a << 2;, , // 240 = 1111 0000, , cout << "Line 5 - Value of c is: " << c << endl ;, , c = a >> 2;, , // 15 = 0000 1111, , cout << "Line 6 - Value of c is: " << c << endl ;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Line 1 - Value of c is : 12, Line 2 - Value of c is: 61, Line 3 - Value of c is: 49, Line 4 - Value of c is: -61, Line 5 - Value of c is: 240, Line 6 - Value of c is: 15, , Assignment Operators, There are following assignment operators supported by C++ language:, Operator, , Description, , Example, , =, , Simple assignment operator,, Assigns values from right side, operands to left side operand., , C = A + B will assign value of A, + B into C, , +=, , Add AND assignment operator,, It adds right operand to the left, operand and assign the result to, left operand., , C += A is equivalent to C = C +, A, , 44
Page 57 :
C++, , -=, , Subtract, AND, assignment, operator, It subtracts right, operand from the left operand, and assign the result to left, operand., , C -= A is equivalent to C = C A, , *=, , Multiply, AND, assignment, operator, It multiplies right, operand with the left operand, and assign the result to left, operand., , C *= A is equivalent to C = C *, A, , /=, , Divide, AND, assignment, operator, It divides left operand, with the right operand and, assign, the, result, to, left, operand., , C /= A is equivalent to C = C /, A, , %=, , Modulus, AND, assignment, operator, It takes modulus, using two operands and assign, the result to left operand., , C %= A is equivalent to C = C, %A, , <<=, , Left shift, operator., , AND, , assignment, , C <<= 2 is same as C = C << 2, , >>=, , Right shift, operator., , AND, , assignment, , C >>= 2 is same as C = C >> 2, , &=, , Bitwise, operator., , assignment, , C &= 2 is same as C = C & 2, , ^=, , Bitwise, exclusive, OR, assignment operator., , and, , C ^= 2 is same as C = C ^ 2, , |=, , Bitwise, inclusive, OR, assignment operator., , and, , C |= 2 is same as C = C | 2, , AND, , Try the following example to understand all the assignment operators available, in C++., , 45
Page 58 :
C++, , Copy and paste the following C++ program in test.cpp file and compile and run, this program., #include <iostream>, using namespace std;, , main(), {, int a = 21;, int c ;, , c =, , a;, , cout << "Line 1 - =, , c +=, , Operator, Value of c = : " <<c<< endl ;, , a;, , cout << "Line 2 - += Operator, Value of c = : " <<c<< endl ;, , c -=, , a;, , cout << "Line 3 - -= Operator, Value of c = : " <<c<< endl ;, , c *=, , a;, , cout << "Line 4 - *= Operator, Value of c = : " <<c<< endl ;, , c /=, , a;, , cout << "Line 5 - /= Operator, Value of c = : " <<c<< endl ;, , c, , = 200;, , c %=, , a;, , cout << "Line 6 - %= Operator, Value of c = : " <<c<< endl ;, , c <<=, , 2;, , cout << "Line 7 - <<= Operator, Value of c = : " <<c<< endl ;, , c >>=, , 2;, , cout << "Line 8 - >>= Operator, Value of c = : " <<c<< endl ;, 46
Page 59 :
C++, , c &=, , 2;, , cout << "Line 9 - &= Operator, Value of c = : " <<c<< endl ;, , c ^=, , 2;, , cout << "Line 10 - ^= Operator, Value of c = : " <<c<< endl ;, , c |=, , 2;, , cout << "Line 11 - |= Operator, Value of c = : " <<c<< endl ;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Line 1 - =, , Operator, Value of c = : 21, , Line 2 - += Operator, Value of c = : 42, Line 3 - -= Operator, Value of c = : 21, Line 4 - *= Operator, Value of c = : 441, Line 5 - /= Operator, Value of c = : 21, Line 6 - %= Operator, Value of c = : 11, Line 7 - <<= Operator, Value of c = : 44, Line 8 - >>= Operator, Value of c = : 11, Line 9 - &= Operator, Value of c = : 2, Line 10 - ^= Operator, Value of c = : 0, Line 11 - |= Operator, Value of c = : 2, , Misc Operators, The following table lists some other operators that C++ supports., Operator, , Description, , sizeof, , sizeof operator returns the size of a variable. For, example, sizeof(a), where ‘a’ is integer, and will return, 4., 47
Page 60 :
C++, , Condition ? X : Y, , Conditional operator (?). If Condition is true then it, returns value of X otherwise returns value of Y., , ,, , Comma operator causes a sequence of operations to, be performed. The value of the entire comma, expression is the value of the last expression of the, comma-separated list., , . (dot) and -> (arrow), , Member operators are used to reference individual, members of classes, structures, and unions., , Cast, , Casting operators convert one data type to another., For example, int(2.2000) would return 2., , &, , Pointer operator ‘&’ returns the address of a variable., For example &a; will give actual address of the, variable., , *, , Pointer operator * is pointer to a variable. For example, *var; will pointer to a variable var., , Operators Precedence in C++, Operator precedence determines the grouping of terms in an expression. This, affects how an expression is evaluated. Certain operators have higher, precedence than others; for example, the multiplication operator has higher, precedence than the addition operator:, For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator *, has higher precedence than +, so it first gets multiplied with 3*2 and then adds, into 7., Here, operators with the highest precedence appear at the top of the table,, those with the lowest appear at the bottom. Within an expression, higher, precedence operators will be evaluated first., Category, , Operator, , Associativity, , Postfix, , () [] -> . ++ - -, , Left to right, , Unary, , + - ! ~ ++ - - (type)* & sizeof, , Right to left, , Multiplicative, , */%, , Left to right, 48
Page 61 :
C++, , Additive, , +-, , Left to right, , Shift, , << >>, , Left to right, , Relational, , < <= > >=, , Left to right, , Equality, , == !=, , Left to right, , Bitwise AND, , &, , Left to right, , Bitwise XOR, , ^, , Left to right, , Bitwise OR, , |, , Left to right, , Logical AND, , &&, , Left to right, , Logical OR, , ||, , Left to right, , Conditional, , ?:, , Right to left, , Assignment, , = += -= *= /= %=>>= <<= &= ^= |=, , Right to left, , Comma, , ,, , Left to right, , Try the following example to understand operator’s precedence concept available, in C++. Copy and paste the following C++ program in test.cpp file and compile, and run this program., Check the simple difference with and without parenthesis. This will produce, different results because (), /, * and + have different precedence. Higher, precedence operators will be evaluated first:, #include <iostream>, using namespace std;, , main(), {, int a = 20;, 49
Page 62 :
C++, , int b = 10;, int c = 15;, int d = 5;, int e;, , e = (a + b) * c / d;, , // ( 30 * 15 ) / 5, , cout << "Value of (a + b) * c / d is :" << e << endl ;, , e = ((a + b) * c) / d;, , // (30 * 15 ) / 5, , cout << "Value of ((a + b) * c) / d is, , e = (a + b) * (c / d);, , // (30) * (15/5), , cout << "Value of (a + b) * (c / d) is, , e = a + (b * c) / d;, , :" << e << endl ;, , //, , :" << e << endl ;, , 20 + (150/5), , cout << "Value of a + (b * c) / d is, , :" << e << endl ;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Value of (a + b) * c / d is :90, Value of ((a + b) * c) / d is, , :90, , Value of (a + b) * (c / d) is, , :90, , Value of a + (b * c) / d is, , :50, , 50
Page 63 :
12. LOOP TYPES, , C++, , There may be a situation, when you need to execute a block of code several, number of times. In general, statements are executed sequentially: The first, statement in a function is executed first, followed by the second, and so on., Programming languages provide various control structures that allow for more, complicated execution paths., A loop statement allows us to execute a statement or group of statements, multiple times and following is the general from of a loop statement in most of, the programming languages:, , C++ programming language provides the following type of loops to handle, looping requirements., Loop Type, , Description, , while loop, , Repeats a statement or group of statements while a, given condition is true. It tests the condition before, executing the loop body., , for loop, , Execute a sequence of statements multiple times and, abbreviates the code that manages the loop variable., , 51
Page 64 :
C++, , do...while loop, , Like a ‘while’ statement, except that it tests the, condition at the end of the loop body., , nested loops, , You can use one or more loop inside any another, ‘while’, ‘for’ or ‘do..while’ loop., , While Loop, A while loop statement repeatedly executes a target statement as long as a, given condition is true., , Syntax, The syntax of a while loop in C++ is:, while(condition), {, statement(s);, }, Here, statement(s) may be a single statement or a block of statements., The condition may be any expression, and true is any non-zero value. The loop, iterates while the condition is true., When the condition becomes false, program control passes to the line, immediately following the loop., , Flow Diagram, , 52
Page 65 :
C++, , Here, key point of the while loop is that the loop might not ever run. When the, condition is tested and the result is false, the loop body will be skipped and the, first statement after the while loop will be executed., , Example, #include <iostream>, using namespace std;, , int main (), {, // Local variable declaration:, int a = 10;, , // while loop execution, while( a < 20 ), {, cout << "value of a: " << a << endl;, a++;, }, 53
Page 66 :
C++, , return 0;, }, When the above code is compiled and executed, it produces the following result:, value of a: 10, value of a: 11, value of a: 12, value of a: 13, value of a: 14, value of a: 15, value of a: 16, value of a: 17, value of a: 18, value of a: 19, for Loop, A for loop is a repetition control structure that allows you to efficiently write a, loop that needs to execute a specific number of times., , Syntax, The syntax of a for loop in C++ is:, for ( init; condition; increment ), {, statement(s);, }, Here is the flow of control in a for loop:, 1. The init step is executed first, and only once. This step allows you to, declare and initialize any loop control variables. You are not required to, put a statement here, as long as a semicolon appears., 2. Next, the condition is evaluated. If it is true, the body of the loop is, executed. If it is false, the body of the loop does not execute and flow of, control jumps to the next statement just after the for loop., 3. After the body of the for loop executes, the flow of control jumps back up, to the increment statement. This statement allows you to update any, 54
Page 67 :
C++, , loop control variables. This statement can be left blank, as long as a, semicolon appears after the condition., 4. The condition is now evaluated again. If it is true, the loop executes and, the process repeats itself (body of loop, then increment step, and then, again condition). After the condition becomes false, the for loop, terminates., , Flow Diagram, , Example, #include <iostream>, using namespace std;, , int main (), {, // for loop execution, for( int a = 10; a < 20; a = a + 1 ), 55
Page 68 :
C++, , {, cout << "value of a: " << a << endl;, }, , return 0;, }, When the above code is compiled and executed, it produces the following result:, value of a: 10, value of a: 11, value of a: 12, value of a: 13, value of a: 14, value of a: 15, value of a: 16, value of a: 17, value of a: 18, value of a: 19, do…while Loop, Unlike for and while loops, which test the loop condition at the top of the loop,, the do...while loop checks its condition at the bottom of the loop., A do...while loop is similar to a while loop, except that a do...while loop is, guaranteed to execute at least one time., , Syntax, The syntax of a do...while loop in C++ is:, do, {, statement(s);, }while( condition );, Notice that the conditional expression appears at the end of the loop, so the, statement(s) in the loop execute once before the condition is tested., , 56
Page 69 :
C++, , If the condition is true, the flow of control jumps back up to do, and the, statement(s) in the loop execute again. This process repeats until the given, condition becomes false., , Flow Diagram, , Example, #include <iostream>, using namespace std;, , int main (), {, // Local variable declaration:, int a = 10;, , // do loop execution, do, {, cout << "value of a: " << a << endl;, a = a + 1;, }while( a < 20 );, , return 0;, 57
Page 70 :
C++, , }, When the above code is compiled and executed, it produces the following result:, value of a: 10, value of a: 11, value of a: 12, value of a: 13, value of a: 14, value of a: 15, value of a: 16, value of a: 17, value of a: 18, value of a: 19, nested Loops, A loop can be nested inside of another loop. C++ allows at least 256 levels of, nesting., , Syntax, The syntax for a nested for loop statement in C++ is as follows:, for ( init; condition; increment ), {, for ( init; condition; increment ), {, statement(s);, }, statement(s); // you can put more statements., }, The syntax for a nested while loop statement in C++ is as follows:, while(condition), {, while(condition), {, statement(s);, 58
Page 71 :
C++, , }, statement(s); // you can put more statements., }, The syntax for a nested do...while loop statement in C++ is as follows:, do, {, statement(s); // you can put more statements., do, {, statement(s);, }while( condition );, , }while( condition );, , Example, The following program uses a nested for loop to find the prime numbers from 2, to 100:, #include <iostream>, using namespace std;, , int main (), {, int i, j;, , for(i=2; i<100; i++) {, for(j=2; j <= (i/j); j++), if(!(i%j)) break; // if factor found, not prime, if(j > (i/j)) cout << i << " is prime\n";, }, return 0;, }, This would produce the following result:, 59
Page 72 :
C++, , 2 is prime, 3 is prime, 5 is prime, 7 is prime, 11 is prime, 13 is prime, 17 is prime, 19 is prime, 23 is prime, 29 is prime, 31 is prime, 37 is prime, 41 is prime, 43 is prime, 47 is prime, 53 is prime, 59 is prime, 61 is prime, 67 is prime, 71 is prime, 73 is prime, 79 is prime, 83 is prime, 89 is prime, 97 is prime, Loop Control Statements, Loop control statements change execution from its normal sequence. When, execution leaves a scope, all automatic objects that were created in that scope, are destroyed., C++ supports the following control statements., Control Statement, , Description, , break statement, , Terminates, the loop or switch statement, and, transfers execution to the statement immediately, 60
Page 73 :
C++, , following the loop or switch., continue statement, , Causes the loop to skip the remainder of its body and, immediately retest its condition prior to reiterating., , goto statement, , Transfers control to the labeled statement. Though it, is not advised to use goto statement in your program., , Break Statement, The break statement has the following two usages in C++:, , , When the break statement is encountered inside a loop, the loop is, immediately terminated and program control resumes at the next, statement following the loop., , , , It can be used to terminate a case in the switch statement (covered in, the next chapter)., , If you are using nested loops (i.e., one loop inside another loop), the break, statement will stop the execution of the innermost loop and start executing the, next line of code after the block., , Syntax, The syntax of a break statement in C++ is:, break;, , Flow Diagram, , 61
Page 74 :
C++, , Example, #include <iostream>, using namespace std;, , int main (), {, // Local variable declaration:, int a = 10;, , // do loop execution, do, {, cout << "value of a: " << a << endl;, a = a + 1;, if( a > 15), {, // terminate the loop, break;, }, }while( a < 20 );, 62
Page 75 :
C++, , return 0;, }, When the above code is compiled and executed, it produces the following result:, value of a: prettyprint notranslate10, value of a: 11, value of a: 12, value of a: 13, value of a: 14, value of a: 15, continue Statement, The continue statement works somewhat like the break statement. Instead of, forcing termination, however, continue forces the next iteration of the loop to, take place, skipping any code in between., For the for loop, continue causes the conditional test and increment portions of, the loop to execute. For the while and do...while loops, program control passes, to the conditional tests., , Syntax, The syntax of a continue statement in C++ is:, continue;, , Flow Diagram, , 63
Page 76 :
C++, , Example, #include <iostream>, using namespace std;, , int main (), {, // Local variable declaration:, int a = 10;, , // do loop execution, do, {, if( a == 15), {, // skip the iteration., a = a + 1;, continue;, }, cout << "value of a: " << a << endl;, a = a + 1;, }while( a < 20 );, 64
Page 77 :
C++, , return 0;, }, When the above code is compiled and executed, it produces the following result:, value of a: 10, value of a: 11, value of a: 12, value of a: 13, value of a: 14, value of a: 16, value of a: 17, value of a: 18, value of a: 19, goto Statement, A goto statement provides an unconditional jump from the goto to a labeled, statement in the same function., NOTE: Use of goto statement is highly discouraged because it makes difficult to, trace the control flow of a program, making the program hard to understand and, hard to modify. Any program that uses a goto can be rewritten so that it doesn't, need the goto., , Syntax, The syntax of a goto statement in C++ is:, goto label;, .., ., label: statement;, Where label is an identifier that identifies a labeled statement. A labeled, statement is any statement that is preceded by an identifier followed by a colon, (:)., , Flow Diagram, , 65
Page 78 :
C++, , Example, #include <iostream>, using namespace std;, , int main (), {, // Local variable declaration:, int a = 10;, , // do loop execution, LOOP:do, {, if( a == 15), {, // skip the iteration., a = a + 1;, goto LOOP;, }, cout << "value of a: " << a << endl;, a = a + 1;, }while( a < 20 );, 66
Page 79 :
C++, , return 0;, }, When the above code is compiled and executed, it produces the following result:, value of a: 10, value of a: 11, value of a: 12, value of a: 13, value of a: 14, value of a: 16, value of a: 17, value of a: 18, value of a: 19, One good use of goto is to exit from a deeply nested routine. For example,, consider the following code fragment:, for(...) {, for(...) {, while(...) {, if(...) goto stop;, ., ., ., }, }, }, stop:, cout << "Error in program.\n";, Eliminating the goto would force a number of additional tests to be performed. A, simplebreak statement would not work here, because it would only cause the, program to exit from the innermost loop., , The Infinite Loop, A loop becomes infinite loop if a condition never becomes false. The for loop is, traditionally used for this purpose. Since none of the three expressions that form, 67
Page 80 :
C++, , the ‘for’ loop are required, you can make an endless loop by leaving the, conditional expression empty., #include <iostream>, using namespace std;, , int main (), {, , for( ; ; ), {, printf("This loop will run forever.\n");, }, , return 0;, }, When the conditional expression is absent, it is assumed to be true. You may, have an initialization and increment expression, but C++ programmers more, commonly use the ‘for (;;)’ construct to signify an infinite loop., NOTE: You can terminate an infinite loop by pressing Ctrl + C keys., , 68
Page 81 :
C++, , 13. DECISION-MAKING STATEMENTS, Decision making structures require that the programmer specify one or more, conditions to be evaluated or tested by the program, along with a statement or, statements to be executed if the condition is determined to be true, and, optionally, other statements to be executed if the condition is determined to be, false., Following is the general from of a typical decision making structure found in, most of the programming languages:, , C++ programming language provides following types of decision making, statements., Statement, , Description, , if statement, , An ‘if’ statement consists of a boolean expression, followed by one or more statements., , if...else statement, , An ‘if’ statement can be followed by an optional, ‘else’ statement, which executes when the boolean, expression is false., , switch statement, , A ‘switch’ statement allows a variable to be tested, , 69
Page 82 :
C++, , for equality against a list of values., nested if statements, , You can use one ‘if’ or ‘else if’ statement inside, another ‘if’ or ‘else if’ statement(s)., , nested switch statements, , You can use one ‘switch’ statement inside another, ‘switch’ statement(s)., , If Statement, An if statement consists of a boolean expression followed by one or more, statements., , Syntax, The syntax of an if statement in C++ is:, if(boolean_expression), {, // statement(s) will execute if the boolean expression is true, }, If the boolean expression evaluates to true, then the block of code inside the if, statement will be executed. If boolean expression evaluates to false, then the, first set of code after the end of the if statement (after the closing curly brace), will be executed., , Flow Diagram, , 70
Page 83 :
C++, , Example, #include <iostream>, using namespace std;, , int main (), {, // local variable declaration:, int a = 10;, , // check the boolean condition, if( a < 20 ), {, // if condition is true then print the following, cout << "a is less than 20;" << endl;, }, cout << "value of a is : " << a << endl;, , return 0;, }, , 71
Page 84 :
C++, , When the above code is compiled and executed, it produces the following result:, a is less than 20;, value of a is : 10, if…else Statement, An if statement can be followed by an optional else statement, which executes, when the boolean expression is false., , Syntax, The syntax of an if...else statement in C++ is:, if(boolean_expression), {, // statement(s) will execute if the boolean expression is true, }, else, {, // statement(s) will execute if the boolean expression is false, }, If the boolean expression evaluates to true, then the if block of code will be, executed, otherwise else block of code will be executed., , Flow Diagram, , 72
Page 85 :
C++, , Example, #include <iostream>, using namespace std;, , int main (), {, // local variable declaration:, int a = 100;, , // check the boolean condition, if( a < 20 ), {, // if condition is true then print the following, cout << "a is less than 20;" << endl;, }, else, {, // if condition is false then print the following, cout << "a is not less than 20;" << endl;, }, cout << "value of a is : " << a << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, a is not less than 20;, value of a is : 100, if...else if...else Statement, An if statement can be followed by an optional else if...else statement, which is, very usefull to test various conditions using single if...else if statement., When using if , else if , else statements there are few points to keep in mind., , , An if can have zero or one else's and it must come after any else if's., 73
Page 86 :
C++, , , , An if can have zero to many else if's and they must come before the else., , , , Once an else if succeeds, none of he remaining else if's or else's will be, tested., , Syntax, The syntax of an if...else if...else statement in C++ is:, if(boolean_expression 1), {, // Executes when the boolean expression 1 is true, }, else if( boolean_expression 2), {, // Executes when the boolean expression 2 is true, }, else if( boolean_expression 3), {, // Executes when the boolean expression 3 is true, }, else, {, // executes when the none of the above condition is true., }, , Example, #include <iostream>, using namespace std;, , int main (), {, // local variable declaration:, int a = 100;, , // check the boolean condition, if( a == 10 ), 74
Page 87 :
C++, , {, // if condition is true then print the following, cout << "Value of a is 10" << endl;, }, else if( a == 20 ), {, // if else if condition is true, cout << "Value of a is 20" << endl;, }, else if( a == 30 ), {, // if else if condition is true, cout << "Value of a is 30" << endl;, }, else, {, // if none of the conditions is true, cout << "Value of a is not matching" << endl;, }, cout << "Exact value of a is : " << a << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Value of a is not matching, Exact value of a is : 100, Switch Statement, A switch statement allows a variable to be tested for equality against a list of, values. Each value is called a case, and the variable being switched on is, checked for each case., , Syntax, The syntax for a switch statement in C++ is as follows:, 75
Page 88 :
C++, , switch(expression){, case constant-expression, , :, , statement(s);, break; //optional, case constant-expression, , :, , statement(s);, break; //optional, , // you can have any number of case statements., default : //Optional, statement(s);, }, The following rules apply to a switch statement:, , , The expression used in a switch statement must have an integral or, enumerated type, or be of a class type in which the class has a single, conversion function to an integral or enumerated type., , , , You can have any number of case statements within a switch. Each case is, followed by the value to be compared to and a colon., , , , The constant-expression for a case must be the same data type as the, variable in the switch, and it must be a constant or a literal., , , , When the variable being switched on is equal to a case, the statements, following that case will execute until a break statement is reached., , , , When a break statement is reached, the switch terminates, and the flow, of control jumps to the next line following the switch statement., , , , Not every case needs to contain a break. If no break appears, the flow of, control will fall through to subsequent cases until a break is reached., , , , A switch statement can have an optional default case, which must, appear at the end of the switch. The default case can be used for, performing a task when none of the cases is true. No break is needed in, the default case., , Flow Diagram, , 76
Page 89 :
C++, , Example, #include <iostream>, using namespace std;, , int main (), {, // local variable declaration:, char grade = 'D';, , switch(grade), {, case 'A' :, cout << "Excellent!" << endl;, break;, case 'B' :, case 'C' :, cout << "Well done" << endl;, break;, 77
Page 90 :
C++, , case 'D' :, cout << "You passed" << endl;, break;, case 'F' :, cout << "Better try again" << endl;, break;, default :, cout << "Invalid grade" << endl;, }, cout << "Your grade is " << grade << endl;, , return 0;, }, This would produce the following result:, You passed, Your grade is D, Nested if Statement, It is always legal to nest if-else statements, which means you can use one if or, else if statement inside another if or else if statement(s)., , Syntax, The syntax for a nested if statement is as follows:, if( boolean_expression 1), {, // Executes when the boolean expression 1 is true, if(boolean_expression 2), {, // Executes when the boolean expression 2 is true, }, }, , You can nest else if...else in the similar way as you have nested if statement., 78
Page 91 :
C++, , Example, #include <iostream>, using namespace std;, , int main (), {, // local variable declaration:, int a = 100;, int b = 200;, , // check the boolean condition, if( a == 100 ), {, // if condition is true then check the following, if( b == 200 ), {, // if condition is true then print the following, cout << "Value of a is 100 and b is 200" << endl;, }, }, cout << "Exact value of a is : " << a << endl;, cout << "Exact value of b is : " << b << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Value of a is 100 and b is 200, Exact value of a is : 100, Exact value of b is : 200, , Nested switch Statements, It is possible to have a switch as part of the statement sequence of an outer, switch. Even if the case constants of the inner and outer switch contain common, values, no conflicts will arise., 79
Page 92 :
C++, , C++ specifies that at least 256 levels of nesting be allowed for switch, statements., , Syntax, The syntax for a nested switch statement is as follows:, switch(ch1) {, case 'A':, cout << "This A is part of outer switch";, switch(ch2) {, case 'A':, cout << "This A is part of inner switch";, break;, case 'B': // ..., }, break;, case 'B': // ..., }, , Example, #include <iostream>, using namespace std;, , int main (), {, // local variable declaration:, int a = 100;, int b = 200;, , switch(a) {, case 100:, cout << "This is part of outer switch" << endl;, switch(b) {, case 200:, cout << "This is part of inner switch" << endl;, 80
Page 93 :
C++, , }, }, cout << "Exact value of a is : " << a << endl;, cout << "Exact value of b is : " << b << endl;, , return 0;, }, This would produce the following result:, This is part of outer switch, This is part of inner switch, Exact value of a is : 100, Exact value of b is : 200, The ? : Operator, We have covered conditional operator “? :” in previous chapter which can be, used to replace if...else statements. It has the following general form:, Exp1 ? Exp2 : Exp3;, Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the, colon., The value of a ‘?’ expression is determined like this: Exp1 is evaluated. If it is, true, then Exp2 is evaluated and becomes the value of the entire ‘?’ expression., If Exp1 is false, then Exp3 is evaluated and its value becomes the value of the, expression., , 81
Page 94 :
14. FUNCTIONS, , C++, , A function is a group of statements that together perform a task. Every C++, program has at least one function, which is main(), and all the most trivial, programs can define additional functions., You can divide up your code into separate functions. How you divide up your, code among different functions is up to you, but logically the division usually is, such that each function performs a specific task., A function declaration tells the compiler about a function's name, return type,, and parameters. A function definition provides the actual body of the function., The C++ standard library provides numerous built-in functions that your, program can call. For example, function strcat() to concatenate two strings,, function memcpy() to copy one memory location to another location, and many, more functions., A function is known with various names like a method or a sub-routine or a, procedure etc., Defining a Function, The general form of a C++ function definition is as follows:, return_type function_name( parameter list ), {, body of the function, }, A C++ function definition consists of a function header and a function body., Here are all the parts of a function:, , , Return Type: A function may return a value. The return_type is the, data type of the value the function returns. Some functions perform the, desired operations without returning a value. In this case, the return_type, is the keyword void., , , , Function Name: This is the actual name of the function. The function, name and the parameter list together constitute the function signature., , , , Parameters: A parameter is like a placeholder. When a function is, invoked, you pass a value to the parameter. This value is referred to as, actual parameter or argument. The parameter list refers to the type,, order, and number of the parameters of a function. Parameters are, optional; that is, a function may contain no parameters., 82
Page 95 :
C++, , , , Function Body: The function body contains a collection of statements, that define what the function does., , Example:, Following is the source code for a function called max(). This function takes two, parameters num1 and num2 and returns the maximum between the two:, // function returning the max between two numbers, , int max(int num1, int num2), {, // local variable declaration, int result;, , if (num1 > num2), result = num1;, else, result = num2;, , return result;, }, Function Declarations, A function declaration tells the compiler about a function name and how to call, the function. The actual body of the function can be defined separately., A function declaration has the following parts:, return_type function_name( parameter list );, For the above defined function max(), following is the function declaration:, int max(int num1, int num2);, Parameter names are not important in function declaration only their type is, required, so following is also valid declaration:, int max(int, int);, Function declaration is required when you define a function in one source file, and you call that function in another file. In such case, you should declare the, function at the top of the file calling the function., 83
Page 96 :
C++, , Calling a Function, While creating a C++ function, you give a definition of what the function has to, do. To use a function, you will have to call or invoke that function., When a program calls a function, program control is transferred to the called, function. A called function performs defined task and when it’s return statement, is executed or when its function-ending closing brace is reached, it returns, program control back to the main program., To call a function, you simply need to pass the required parameters along with, function name, and if function returns a value, then you can store returned, value. For example:, #include <iostream>, using namespace std;, , // function declaration, int max(int num1, int num2);, , int main (), {, // local variable declaration:, int a = 100;, int b = 200;, int ret;, , // calling a function to get max value., ret = max(a, b);, , cout << "Max value is : " << ret << endl;, , return 0;, }, , // function returning the max between two numbers, int max(int num1, int num2), {, // local variable declaration, 84
Page 97 :
C++, , int result;, , if (num1 > num2), result = num1;, else, result = num2;, , return result;, }, I kept max() function along with main() function and compiled the source code., While running final executable, it would produce the following result:, Max value is : 200, Function Arguments, If a function is to use arguments, it must declare variables that accept the, values of the arguments. These variables are called the formal parameters of, the function., The formal parameters behave like other local variables inside the function and, are created upon entry into the function and destroyed upon exit., While calling a function, there are two ways that arguments can be passed to a, function:, Call Type, , Description, , Call by value, , This method copies the actual value of an argument, into the formal parameter of the function. In this case,, changes made to the parameter inside the function, have no effect on the argument., , Call by pointer, , This method copies the address of an argument into, the formal parameter. Inside the function, the address, is used to access the actual argument used in the call., This means that changes made to the parameter, affect the argument., , Call by reference, , This method copies the reference of an argument into, the formal parameter. Inside the function, the, reference is used to access the actual argument used, 85
Page 98 :
C++, , in the call. This means that changes made to the, parameter affect the argument., , Call by Value, The call by value method of passing arguments to a function copies the actual, value of an argument into the formal parameter of the function. In this case,, changes made to the parameter inside the function have no effect on the, argument., By default, C++ uses call by value to pass arguments. In general, this means, that code within a function cannot alter the arguments used to call the function., Consider the function swap() definition as follows., // function definition to swap the values., void swap(int x, int y), {, int temp;, , temp = x; /* save the value of x */, x = y;, , /* put y into x */, , y = temp; /* put x into y */, , return;, }, Now, let us call the function swap() by passing actual values as in the following, example:, #include <iostream>, using namespace std;, , // function declaration, void swap(int x, int y);, , int main (), {, // local variable declaration:, int a = 100;, 86
Page 99 :
C++, , int b = 200;, , cout << "Before swap, value of a :" << a << endl;, cout << "Before swap, value of b :" << b << endl;, , // calling a function to swap the values., swap(a, b);, , cout << "After swap, value of a :" << a << endl;, cout << "After swap, value of b :" << b << endl;, , return 0;, }, When the above code is put together in a file, compiled and executed, it, produces the following result:, Before swap, value of a :100, Before swap, value of b :200, After swap, value of a :100, After swap, value of b :200, Which shows that there is no change in the values though they had been, changed inside the function., Call by Pointer, The call by pointer method of passing arguments to a function copies the, address of an argument into the formal parameter. Inside the function, the, address is used to access the actual argument used in the call. This means that, changes made to the parameter affect the passed argument., To pass the value by pointer, argument pointers are passed to the functions just, like any other value. So accordingly you need to declare the function parameters, as pointer types as in the following function swap(), which exchanges the, values of the two integer variables pointed to by its arguments., // function definition to swap the values., void swap(int *x, int *y), {, int temp;, 87
Page 100 :
C++, , temp = *x; /* save the value at address x */, *x = *y; /* put y into x */, *y = temp; /* put x into y */, , return;, }, To check the, Pointers chapter., , more, , detail, , about, , C++, , pointers,, , kindly, , check C++, , For now, let us call the function swap() by passing values by pointer as in the, following example:, #include <iostream>, using namespace std;, , // function declaration, void swap(int *x, int *y);, , int main (), {, // local variable declaration:, int a = 100;, int b = 200;, , cout << "Before swap, value of a :" << a << endl;, cout << "Before swap, value of b :" << b << endl;, , /* calling a function to swap the values., * &a indicates pointer to a ie. address of variable a and, * &b indicates pointer to b ie. address of variable b., */, swap(&a, &b);, , cout << "After swap, value of a :" << a << endl;, cout << "After swap, value of b :" << b << endl;, 88
Page 101 :
C++, , return 0;, }, When the above code is put together in a file, compiled and executed, it, produces the following result:, Before swap, value of a :100, Before swap, value of b :200, After swap, value of a :200, After swap, value of b :100, Call by Reference, The call by reference method of passing arguments to a function copies the, reference of an argument into the formal parameter. Inside the function, the, reference is used to access the actual argument used in the call. This means that, changes made to the parameter affect the passed argument., To pass the value by reference, argument reference is passed to the functions, just like any other value. So accordingly you need to declare the function, parameters as reference types as in the following function swap(), which, exchanges the values of the two integer variables pointed to by its arguments., // function definition to swap the values., void swap(int &x, int &y), {, int temp;, temp = x; /* save the value at address x */, x = y;, , /* put y into x */, , y = temp; /* put x into y */, , return;, }, For now, let us call the function swap() by passing values by reference as in the, following example:, #include <iostream>, using namespace std;, , // function declaration, void swap(int &x, int &y);, 89
Page 102 :
C++, , int main (), {, // local variable declaration:, int a = 100;, int b = 200;, , cout << "Before swap, value of a :" << a << endl;, cout << "Before swap, value of b :" << b << endl;, , /* calling a function to swap the values using variable reference.*/, swap(a, b);, , cout << "After swap, value of a :" << a << endl;, cout << "After swap, value of b :" << b << endl;, , return 0;, }, When the above code is put together in a file, compiled and executed, it, produces the following result:, Before swap, value of a :100, Before swap, value of b :200, After swap, value of a :200, After swap, value of b :100, , By default, C++ uses call by value to pass arguments. In general, this means, that code within a function cannot alter the arguments used to call the function, and above mentioned example while calling max() function used the same, method., Default Values for Parameters, When you define a function, you can specify a default value for each of the last, parameters. This value will be used if the corresponding argument is left blank, when calling to the function., , 90
Page 103 :
C++, , This is done by using the assignment operator and assigning values for the, arguments in the function definition. If a value for that parameter is not passed, when the function is called, the default given value is used, but if a value is, specified, this default value is ignored and the passed value is used instead., Consider the following example:, #include <iostream>, using namespace std;, , int sum(int a, int b=20), {, int result;, , result = a + b;, , return (result);, }, , int main (), {, // local variable declaration:, int a = 100;, int b = 200;, int result;, , // calling a function to add the values., result = sum(a, b);, cout << "Total value is :" << result << endl;, , // calling a function again as follows., result = sum(a);, cout << "Total value is :" << result << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, 91
Page 104 :
C++, , Total value is :300, Total value is :120, , 92
Page 105 :
15. NUMBERS, , C++, , Normally, when we work with Numbers, we use primitive data types such as int,, short, long, float and double, etc. The number data types, their possible values, and number ranges have been explained while discussing C++ Data Types., Defining Numbers in C++, You have already defined numbers in various examples given in previous, chapters. Here is another consolidated example to define various types of, numbers in C++:, #include <iostream>, using namespace std;, , int main (), {, // number definition:, short, , s;, , int, , i;, , long, , l;, , float, , f;, , double d;, , // number assignments;, s = 10;, i = 1000;, l = 1000000;, f = 230.47;, d = 30949.374;, , // number printing;, cout << "short, , s :" << s << endl;, , cout << "int, , i :" << i << endl;, , cout << "long, , l :" << l << endl;, , cout << "float, , f :" << f << endl;, 93
Page 106 :
C++, , cout << "double d :" << d << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, short, , s :10, , int, , i :1000, , long, , l :1000000, , float, , f :230.47, , double d :30949.4, Math Operations in C++, In addition to the various functions you can create, C++ also includes some, useful functions you can use. These functions are available in standard C and, C++ libraries and called built-in functions. These are functions that can be, included in your program and then use., C++ has a rich set of mathematical operations, which can be performed on, various numbers. Following table lists down some useful built-in mathematical, functions available in C++., To utilize these functions you need to include the math header file <cmath>., S.N., , Function & Purpose, , 1, , double cos(double);, This function takes an angle (as a double) and returns the cosine., , 2, , double sin(double);, This function takes an angle (as a double) and returns the sine., , 3, , double tan(double);, This function takes an angle (as a double) and returns the tangent., , 4, , double log(double);, This function takes a number and returns the natural log of that, number., , 94
Page 107 :
C++, , 5, , double pow(double, double);, The first is a number you wish to raise and the second is the power you, wish to raise it t, , 6, , double hypot(double, double);, If you pass this function the length of two sides of a right triangle, it will, return you the length of the hypotenuse., , 7, , double sqrt(double);, You pass this function a number and it gives you the square root., , 8, , int abs(int);, This function returns the absolute value of an integer that is passed to, it., , 9, , double fabs(double);, This function returns the absolute value of any decimal number passed, to it., , 10, , double floor(double);, Finds the integer which is less than or equal to the argument passed to, it., , Following is a simple example to show few of the mathematical operations:, #include <iostream>, #include <cmath>, using namespace std;, , int main (), {, // number definition:, short, , s = 10;, , int, , i = -1000;, , long, , l = 100000;, , float, , f = 230.47;, 95
Page 108 :
C++, , double d = 200.374;, , // mathematical operations;, cout << "sin(d) :" << sin(d) << endl;, cout << "abs(i), , :" << abs(i) << endl;, , cout << "floor(d) :" << floor(d) << endl;, cout << "sqrt(f) :" << sqrt(f) << endl;, cout << "pow( d, 2) :" << pow(d, 2) << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, sign(d) :-0.634939, abs(i), , :1000, , floor(d) :200, sqrt(f) :15.1812, pow( d, 2 ) :40149.7, Random Numbers in C++, There are many cases where you will wish to generate a random number. There, are actually two functions you will need to know about random number, generation. The first is rand(), this function will only return a pseudo random, number. The way to fix this is to first call the srand() function., Following is a simple example to generate few random numbers. This example, makes use of time() function to get the number of seconds on your system, time, to randomly seed the rand() function:, #include <iostream>, #include <ctime>, #include <cstdlib>, , using namespace std;, , int main (), {, int i,j;, , 96
Page 109 :
C++, , // set the seed, srand( (unsigned)time( NULL ) );, , /* generate 10, , random numbers. */, , for( i = 0; i < 10; i++ ), {, // generate actual random number, j= rand();, cout <<" Random Number : " << j << endl;, }, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Random Number : 1748144778, Random Number : 630873888, Random Number : 2134540646, Random Number : 219404170, Random Number : 902129458, Random Number : 920445370, Random Number : 1319072661, Random Number : 257938873, Random Number : 1256201101, Random Number : 580322989, , 97
Page 110 :
16. ARRAYS, , C++, , C++ provides a data structure, the array, which stores a fixed-size sequential, collection of elements of the same type. An array is used to store a collection of, data, but it is often more useful to think of an array as a collection of variables, of the same type., Instead of declaring individual variables, such as number0, number1, ..., and, number99, you declare one array variable such as numbers and use, numbers[0], numbers[1], and ..., numbers[99] to represent individual variables., A specific element in an array is accessed by an index., All arrays consist of contiguous memory locations. The lowest address, corresponds to the first element and the highest address to the last element., Declaring Arrays, To declare an array in C++, the programmer specifies the type of the elements, and the number of elements required by an array as follows:, type arrayName [ arraySize ];, This is called a single-dimension array. The arraySize must be an integer, constant greater than zero and type can be any valid C++ data type. For, example, to declare a 10-element array called balance of type double, use this, statement:, double balance[10];, Initializing Arrays, You can initialize C++ array elements either one by one or using a single, statement as follows:, double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};, The number of values between braces { } cannot be larger than the number of, elements that we declare for the array between square brackets [ ]. Following is, an example to assign a single element of the array:, If you omit the size of the array, an array just big enough to hold the, initialization is created. Therefore, if you write:, double balance[] = {1000.0, 2.0, 3.4, 17.0, 50.0};, , You will create exactly the same array as you did in the previous example., 98
Page 111 :
C++, , balance[4] = 50.0;, The above statement assigns element number 5th in the array a value of 50.0., Array with 4th index will be 5th, i.e., last element because all arrays have 0 as, the index of their first element which is also called base index. Following is the, pictorial representation of the same array we discussed above:, , Accessing Array Elements, An element is accessed by indexing the array name. This is done by placing the, index of the element within square brackets after the name of the array. For, example:, double salary = balance[9];, The above statement will take 10th element from the array and assign the value, to salary variable. Following is an example, which will use all the abovementioned three concepts viz. declaration, assignment and accessing arrays:, #include <iostream>, using namespace std;, , #include <iomanip>, using std::setw;, , int main (), {, int n[ 10 ]; // n is an array of 10 integers, , // initialize elements of array n to 0, for ( int i = 0; i < 10; i++ ), {, n[ i ] = i + 100; // set element at location i to i + 100, }, cout << "Element" << setw( 13 ) << "Value" << endl;, , // output each array element's value, 99
Page 112 :
C++, , for ( int j = 0; j < 10; j++ ), {, cout << setw( 7 )<< j << setw( 13 ) << n[ j ] << endl;, }, , return 0;, }, This program makes use of setw() function to format the output. When the, above code is compiled and executed, it produces the following result:, Element, , Value, , 0, , 100, , 1, , 101, , 2, , 102, , 3, , 103, , 4, , 104, , 5, , 105, , 6, , 106, , 7, , 107, , 8, , 108, , 9, , 109, , Arrays in C++, Arrays are important to C++ and should need lots of more detail. There are, following few important concepts, which should be clear to a C++ programmer:, Concept, , Description, , Multi-dimensional arrays, , C++ supports multidimensional arrays. The, simplest form of the multidimensional array is, the two-dimensional array., , Pointer to an array, , You can generate a pointer to the first, element of an array by simply specifying the, array name, without any index., , Passing arrays to functions, , You can pass to the function a pointer to an, 100
Page 113 :
C++, , array by specifying the array's name without, an index., Return array from functions, , C++ allows a function to return an array., , Multi-dimensional Arrays, C++ allows multidimensional arrays., multidimensional array declaration:, , Here, , is, , the, , general, , form, , of, , a, , type name[size1][size2]...[sizeN];, For example, the following declaration creates a three dimensional 5 . 10 . 4, integer array:, int threedim[5][10][4];, , Two-Dimensional Arrays, The simplest form of the multidimensional array is the two-dimensional array. A, two-dimensional array is, in essence, a list of one-dimensional arrays. To declare, a two-dimensional integer array of size x,y, you would write something as, follows:, type arrayName [ x ][ y ];, Where type can be any valid C++ data type and arrayName will be a valid C++, identifier., A two-dimensional array can be think as a table, which will have x number of, rows and y number of columns. A 2-dimensional array a, which contains three, rows and four columns can be shown as below:, , Thus, every element in array a is identified by an element name of the form a[ i, ][ j ], where a is the name of the array, and i and j are the subscripts that, uniquely identify each element in a., , Initializing Two-Dimensional Arrays, 101
Page 114 :
C++, , Multidimensioned arrays may be initialized by specifying bracketed values for, each row. Following is an array with 3 rows and each row have 4 columns., int a[3][4] = {, {0, 1, 2, 3} ,, , /*, , initializers for row indexed by 0 */, , {4, 5, 6, 7} ,, , /*, , initializers for row indexed by 1 */, , {8, 9, 10, 11}, , /*, , initializers for row indexed by 2 */, , };, The nested braces, which indicate the intended row, are optional. The following, initialization is equivalent to previous example:, int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};, , Accessing Two-Dimensional Array Elements, An element in 2-dimensional array is accessed by using the subscripts, i.e., row, index and column index of the array. For example:, int val = a[2][3];, The above statement will take 4th element from the 3rd row of the array. You, can verify it in the above digram., #include <iostream>, using namespace std;, , int main (), {, // an array with 5 rows and 2 columns., int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};, , // output each array element's value, for ( int i = 0; i < 5; i++ ), for ( int j = 0; j < 2; j++ ), {, cout << "a[" << i << "][" << j << "]: ";, cout << a[i][j]<< endl;, }, , 102
Page 115 :
C++, , return 0;, }, When the above code is compiled and executed, it produces the following result:, a[0][0]: 0, a[0][1]: 0, a[1][0]: 1, a[1][1]: 2, a[2][0]: 2, a[2][1]: 4, a[3][0]: 3, a[3][1]: 6, a[4][0]: 4, a[4][1]: 8, As explained above, you can have arrays with any number of dimensions,, although it is likely that most of the arrays you create will be of one or two, dimensions., Pointer to an Array, It is most likely that you would not understand this chapter until you go through, the chapter related C++ Pointers., So assuming you have bit understanding on pointers in C++, let us start: An, array name is a constant pointer to the first element of the array. Therefore, in, the declaration:, double balance[50];, balance is a pointer to &balance[0], which is the address of the first element of, the array balance. Thus, the following program fragment assigns p the address, of the first element ofbalance:, double *p;, double balance[10];, , p = balance;, It is legal to use array names as constant pointers, and vice versa. Therefore,, *(balance + 4) is a legitimate way of accessing the data at balance[4]., , 103
Page 116 :
C++, , Once you store the address of first element in p, you can access array elements, using *p, *(p+1), *(p+2) and so on. Below is the example to show all the, concepts discussed above:, #include <iostream>, using namespace std;, , int main (), {, // an array with 5 elements., double balance[5] = {1000.0, 2.0, 3.4, 17.0, 50.0};, double *p;, , p = balance;, , // output each array element's value, cout << "Array values using pointer " << endl;, for ( int i = 0; i < 5; i++ ), {, cout << "*(p + " << i << ") : ";, cout << *(p + i) << endl;, }, , cout << "Array values using balance as address " << endl;, for ( int i = 0; i < 5; i++ ), {, cout << "*(balance + " << i << ") : ";, cout << *(balance + i) << endl;, }, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Array values using pointer, *(p + 0) : 1000, 104
Page 117 :
C++, , *(p + 1) : 2, *(p + 2) : 3.4, *(p + 3) : 17, *(p + 4) : 50, Array values using balance as address, *(balance + 0) : 1000, *(balance + 1) : 2, *(balance + 2) : 3.4, *(balance + 3) : 17, *(balance + 4) : 50, In the above example, p is a pointer to double which means it can store address, of a variable of double type. Once we have address in p, then *p will give us, value available at the address stored in p, as we have shown in the above, example., Passing Arrays to Functions, C++ does not allow to pass an entire array as an argument to a function., However, You can pass a pointer to an array by specifying the array's name, without an index., If you want to pass a single-dimension array as an argument in a function, you, would have to declare function formal parameter in one of following three ways, and all three declaration methods produce similar results because each tells the, compiler that an integer pointer is going to be received., , Way-1, Formal parameters as a pointer as follows:, void myFunction(int *param), {, ., ., ., }, , Way-2, Formal parameters as a sized array as follows:, void myFunction(int param[10]), 105
Page 118 :
C++, , {, ., ., ., }, , Way-3, Formal parameters as an unsized array as follows:, void myFunction(int param[]), {, ., ., ., }, Now, consider the following function, which will take an array as an argument, along with another argument and based on the passed arguments, it will return, average of the numbers passed through the array as follows:, double getAverage(int arr[], int size), {, int, , i, sum = 0;, , double avg;, , for (i = 0; i < size; ++i), {, sum += arr[i];, }, , avg = double(sum) / size;, , return avg;, }, Now, let us call the above function as follows:, #include <iostream>, 106
Page 119 :
C++, , using namespace std;, , // function declaration:, double getAverage(int arr[], int size);, , int main (), {, // an int array with 5 elements., int balance[5] = {1000, 2, 3, 17, 50};, double avg;, , // pass pointer to the array as an argument., avg = getAverage( balance, 5 ) ;, , // output the returned value, cout << "Average value is: " << avg << endl;, , return 0;, }, When the above code is compiled together and executed, it produces the, following result:, Average value is: 214.4, As you can see, the length of the array doesn't matter as far as the function is, concerned because C++ performs no bounds checking for the formal, parameters., Return Array from Functions, C++ does not allow to return an entire array as an argument to a function., However, you can return a pointer to an array by specifying the array's name, without an index., If you want to return a single-dimension array from a function, you would have, to declare a function returning a pointer as in the following example:, int * myFunction(), {, ., 107
Page 120 :
C++, , ., ., }, Second point to remember is that C++ does not advocate to return the address, of a local variable to outside of the function so you would have to define the, local variable as staticvariable., Now, consider the following function, which will generate 10 random numbers, and return them using an array and call this function as follows:, #include <iostream>, #include <ctime>, , using namespace std;, , // function to generate and retrun random numbers., int * getRandom( ), {, static int, , r[10];, , // set the seed, srand( (unsigned)time( NULL ) );, for (int i = 0; i < 10; ++i), {, r[i] = rand();, cout << r[i] << endl;, }, , return r;, }, , // main function to call above defined function., int main (), {, // a pointer to an int., int *p;, 108
Page 121 :
C++, , p = getRandom();, for ( int i = 0; i < 10; i++ ), {, cout << "*(p + " << i << ") : ";, cout << *(p + i) << endl;, }, , return 0;, }, When the above code is compiled together and executed, it produces result, something as follows:, 624723190, 1468735695, 807113585, 976495677, 613357504, 1377296355, 1530315259, 1778906708, 1820354158, 667126415, *(p + 0) : 624723190, *(p + 1) : 1468735695, *(p + 2) : 807113585, *(p + 3) : 976495677, *(p + 4) : 613357504, *(p + 5) : 1377296355, *(p + 6) : 1530315259, *(p + 7) : 1778906708, *(p + 8) : 1820354158, *(p + 9) : 667126415, , 109
Page 122 :
C++, , 110
Page 123 :
17. STRINGS, , C++, , C++ provides following two types of string representations:, , , The C-style character string., , , , The string class type introduced with Standard C++., , The C-Style Character String, The C-style character string originated within the C language and continues to, be supported within C++. This string is actually a one-dimensional array of, characters which is terminated by a null character '\0'. Thus a null-terminated, string contains the characters that comprise the string followed by a null., The following declaration and initialization create a string consisting of the word, "Hello". To hold the null character at the end of the array, the size of the, character array containing the string is one more than the number of characters, in the word "Hello.", char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};, If you follow the rule of array initialization, then you can write the above, statement as follows:, char greeting[] = "Hello";, Following is the memory presentation of above defined string in C/C++:, , Actually, you do not place the null character at the end of a string constant. The, C++ compiler automatically places the '\0' at the end of the string when it, initializes the array. Let us try to print above-mentioned string:, #include <iostream>, , using namespace std;, 111
Page 128 :
18. POINTERS, , C++, , C++ pointers are easy and fun to learn. Some C++ tasks are performed more, easily with pointers, and other C++ tasks, such as dynamic memory allocation,, cannot be performed without them., As you know every variable is a memory location and every memory location, has its address defined which can be accessed using ampersand (&) operator, which denotes an address in memory. Consider the following which will print the, address of the variables defined:, #include <iostream>, , using namespace std;, , int main (), {, int, , var1;, , char var2[10];, , cout << "Address of var1 variable: ";, cout << &var1 << endl;, , cout << "Address of var2 variable: ";, cout << &var2 << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Address of var1 variable: 0xbfebd5c0, Address of var2 variable: 0xbfebd5b6, What are Pointers?, A pointer is a variable whose value is the address of another variable. Like any, variable or constant, you must declare a pointer before you can work with it. The, general form of a pointer variable declaration is:, 116
Page 129 :
C++, , type *var-name;, Here, type is the pointer's base type; it must be a valid C++ type and varname is the name of the pointer variable. The asterisk you used to declare a, pointer is the same asterisk that you use for multiplication. However, in this, statement the asterisk is being used to designate a variable as a pointer., Following are the valid pointer declaration:, int, , *ip;, , // pointer to an integer, , double *dp;, , // pointer to a double, , float, , *fp;, , // pointer to a float, , char, , *ch, , // pointer to character, , The actual data type of the value of all pointers, whether integer, float,, character, or otherwise, is the same, a long hexadecimal number that represents, a memory address. The only difference between pointers of different data types, is the data type of the variable or constant that the pointer points to., Using Pointers in C++, There are few important operations, which we will do with the pointers very, frequently. (a) We define a pointer variable. (b) Assign the address of a variable, to a pointer. (c) Finally access the value at the address available in the pointer, variable. This is done by using unary operator * that returns the value of the, variable located at the address specified by its operand. Following example, makes use of these operations:, #include <iostream>, , using namespace std;, , int main (), {, int, , var = 20;, , // actual variable declaration., , int, , *ip;, , // pointer variable, , ip = &var;, , // store address of var in pointer variable, , cout << "Value of var variable: ";, cout << var << endl;, , 117
Page 130 :
C++, , // print the address stored in ip pointer variable, cout << "Address stored in ip variable: ";, cout << ip << endl;, , // access the value at the address available in pointer, cout << "Value of *ip variable: ";, cout << *ip << endl;, , return 0;, }, When the above code is compiled and executed, it produces result something as, follows:, Value of var variable: 20, Address stored in ip variable: 0xbfc601ac, Value of *ip variable: 20, Pointers in C++, Pointers have many but easy concepts and they are very important to C++, programming. There are following few important pointer concepts which should, be clear to a C++ programmer:, Concept, , Description, , C++ Null Pointers, , C++ supports null pointer, which is a constant, with a value of zero defined in several, standard libraries., , C++ pointer arithmetic, , There are four arithmetic operators that can, be used on pointers: ++, --, +, -, , C++ pointers vs arrays, , There is a close relationship between pointers, and arrays., , C++ array of pointers, , You can define arrays to hold a number of, pointers., , C++ pointer to pointer, , C++ allows you to have pointer on a pointer, 118
Page 131 :
C++, , and so on., Passing pointers to functions, , Passing an argument by reference or by, address both enable the passed argument to, be changed in the calling function by the, called function., , Return pointer from functions, , C++ allows a function to return a pointer to, local variable, static variable and dynamically, allocated memory as well., , Null Pointers, It is always a good practice to assign the pointer NULL to a pointer variable in, case you do not have exact address to be assigned. This is done at the time of, variable declaration. A pointer that is assigned NULL is called a null pointer., The NULL pointer is a constant with a value of zero defined in several standard, libraries, including iostream. Consider the following program:, #include <iostream>, , using namespace std;, , int main (), {, int, , *ptr = NULL;, , cout << "The value of ptr is " << ptr ;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, The value of ptr is 0, On most of the operating systems, programs are not permitted to access, memory at address 0 because that memory is reserved by the operating system., However, the memory address 0 has special significance; it signals that the, pointer is not intended to point to an accessible memory location. But by, 119
Page 132 :
C++, , convention, if a pointer contains the null (zero) value, it is assumed to point to, nothing., To check for a null pointer you can use an if statement as follows:, if(ptr), , // succeeds if p is not null, , if(!ptr), , // succeeds if p is null, , Thus, if all unused pointers are given the null value and you avoid the use of a, null pointer, you can avoid the accidental misuse of an uninitialized pointer., Many times, uninitialized variables hold some junk values and it becomes, difficult to debug the program., Pointer Arithmetic, As you understood pointer is an address which is a numeric value; therefore,, you can perform arithmetic operations on a pointer just as you can a numeric, value. There are four arithmetic operators that can be used on pointers: ++, --,, +, and To understand pointer arithmetic, let us consider that ptr is an integer pointer, which points to the address 1000. Assuming 32-bit integers, let us perform the, following arithmatic operation on the pointer:, ptr++, the ptr will point to the location 1004 because each time ptr is incremented, it, will point to the next integer. This operation will move the pointer to next, memory location without impacting actual value at the memory location. If ptr, points to a character whose address is 1000, then above operation will point to, the location 1001 because next character will be available at 1001., , Incrementing a Pointer, We prefer using a pointer in our program instead of an array because the, variable pointer can be incremented, unlike the array name which cannot be, incremented because it is a constant pointer. The following program increments, the variable pointer to access each succeeding element of the array:, #include <iostream>, , using namespace std;, const int MAX = 3;, , int main (), {, int, , var[MAX] = {10, 100, 200};, 120
Page 133 :
C++, , int, , *ptr;, , // let us have array address in pointer., ptr = var;, for (int i = 0; i < MAX; i++), {, cout << "Address of var[" << i << "] = ";, cout << ptr << endl;, , cout << "Value of var[" << i << "] = ";, cout << *ptr << endl;, , // point to the next location, ptr++;, }, return 0;, }, When the above code is compiled and executed, it produces result something as, follows:, Address of var[0] = 0xbfa088b0, Value of var[0] = 10, Address of var[1] = 0xbfa088b4, Value of var[1] = 100, Address of var[2] = 0xbfa088b8, Value of var[2] = 200, , Decrementing a Pointer, The same considerations apply to decrementing a pointer, which decreases its, value by the number of bytes of its data type as shown below:, #include <iostream>, , using namespace std;, const int MAX = 3;, 121
Page 134 :
C++, , int main (), {, int, , var[MAX] = {10, 100, 200};, , int, , *ptr;, , // let us have address of the last element in pointer., ptr = &var[MAX-1];, for (int i = MAX; i > 0; i--), {, cout << "Address of var[" << i << "] = ";, cout << ptr << endl;, , cout << "Value of var[" << i << "] = ";, cout << *ptr << endl;, , // point to the previous location, ptr--;, }, return 0;, }, When the above code is compiled and executed, it produces result something as, follows:, Address of var[3] = 0xbfdb70f8, Value of var[3] = 200, Address of var[2] = 0xbfdb70f4, Value of var[2] = 100, Address of var[1] = 0xbfdb70f0, Value of var[1] = 10, , Pointer Comparisons, Pointers may be compared by using relational operators, such as ==, <, and >., If p1 and p2 point to variables that are related to each other, such as elements, of the same array, then p1 and p2 can be meaningfully compared., 122
Page 135 :
C++, , The following program modifies the previous example one by incrementing the, variable pointer so long as the address to which it points is either less than or, equal to the address of the last element of the array, which is &var[MAX - 1]:, #include <iostream>, , using namespace std;, const int MAX = 3;, , int main (), {, int, , var[MAX] = {10, 100, 200};, , int, , *ptr;, , // let us have address of the first element in pointer., ptr = var;, int i = 0;, while ( ptr <= &var[MAX - 1] ), {, cout << "Address of var[" << i << "] = ";, cout << ptr << endl;, , cout << "Value of var[" << i << "] = ";, cout << *ptr << endl;, , // point to the previous location, ptr++;, i++;, }, return 0;, }, When the above code is compiled and executed, it produces result something as, follows:, Address of var[0] = 0xbfce42d0, Value of var[0] = 10, 123
Page 136 :
C++, , Address of var[1] = 0xbfce42d4, Value of var[1] = 100, Address of var[2] = 0xbfce42d8, Value of var[2] = 200, Pointers vs Arrays, Pointers and arrays are strongly related. In fact, pointers and arrays are, interchangeable in many cases. For example, a pointer that points to the, beginning of an array can access that array by using either pointer arithmetic or, array-style indexing. Consider the following program:, #include <iostream>, , using namespace std;, const int MAX = 3;, , int main (), {, int, , var[MAX] = {10, 100, 200};, , int, , *ptr;, , // let us have array address in pointer., ptr = var;, for (int i = 0; i < MAX; i++), {, cout << "Address of var[" << i << "] = ";, cout << ptr << endl;, , cout << "Value of var[" << i << "] = ";, cout << *ptr << endl;, , // point to the next location, ptr++;, }, return 0;, }, 124
Page 137 :
C++, , When the above code is compiled and executed, it produces result something as, follows:, Address of var[0] = 0xbfa088b0, Value of var[0] = 10, Address of var[1] = 0xbfa088b4, Value of var[1] = 100, Address of var[2] = 0xbfa088b8, Value of var[2] = 200, However, pointers and arrays are not completely interchangeable. For example,, consider the following program:, #include <iostream>, , using namespace std;, const int MAX = 3;, , int main (), {, int, , var[MAX] = {10, 100, 200};, , for (int i = 0; i < MAX; i++), {, *var = i;, , // This is a correct syntax, , var++;, , // This is incorrect., , }, return 0;, }, It is perfectly acceptable to apply the pointer operator * to var but it is illegal to, modify var value. The reason for this is that var is a constant that points to the, beginning of an array and can not be used as l-value., Because an array name generates a pointer constant, it can still be used in, pointer-style expressions, as long as it is not modified. For example, the, following is a valid statement that assigns var[2] the value 500:, *(var + 2) = 500;, 125
Page 138 :
C++, , Above statement is valid and will compile successfully because var is not, changed., Array of Pointers, Before we understand the concept of array of pointers, let us consider the, following example, which makes use of an array of 3 integers:, #include <iostream>, , using namespace std;, const int MAX = 3;, , int main (), {, int, , var[MAX] = {10, 100, 200};, , for (int i = 0; i < MAX; i++), {, cout << "Value of var[" << i << "] = ";, cout << var[i] << endl;, }, return 0;, }, When the above code is compiled and executed, it produces the following result:, Value of var[0] = 10, Value of var[1] = 100, Value of var[2] = 200, There may be a situation, when we want to maintain an array, which can store, pointers to an int or char or any other data type available. Following is the, declaration of an array of pointers to an integer:, int *ptr[MAX];, This declares ptr as an array of MAX integer pointers. Thus, each element in ptr,, now holds a pointer to an int value. Following example makes use of three, integers which will be stored in an array of pointers as follows:, #include <iostream>, 126
Page 139 :
C++, , using namespace std;, const int MAX = 3;, , int main (), {, int, , var[MAX] = {10, 100, 200};, , int *ptr[MAX];, , for (int i = 0; i < MAX; i++), {, ptr[i] = &var[i]; // assign the address of integer., }, for (int i = 0; i < MAX; i++), {, cout << "Value of var[" << i << "] = ";, cout << *ptr[i] << endl;, }, return 0;, }, When the above code is compiled and executed, it produces the following result:, Value of var[0] = 10, Value of var[1] = 100, Value of var[2] = 200, You can also use an array of pointers to character to store a list of strings as, follows:, #include <iostream>, , using namespace std;, const int MAX = 4;, , int main (), {, 127
Page 140 :
C++, , char *names[MAX] = {, "Zara Ali",, "Hina Ali",, "Nuha Ali",, "Sara Ali",, };, , for (int i = 0; i < MAX; i++), {, cout << "Value of names[" << i << "] = ";, cout << names[i] << endl;, }, return 0;, }, When the above code is compiled and executed, it produces the following result:, Value of names[0] = Zara Ali, Value of names[1] = Hina Ali, Value of names[2] = Nuha Ali, Value of names[3] = Sara Ali, , Pointer to a Pointer, A pointer to a pointer is a form of multiple indirection or a chain of pointers., Normally, a pointer contains the address of a variable. When we define a pointer, to a pointer, the first pointer contains the address of the second pointer, which, points to the location that contains the actual value as shown below., , A variable that is a pointer to a pointer must be declared as such. This is done, by placing an additional asterisk in front of its name. For example, following is, the declaration to declare a pointer to a pointer of type int:, int **var;, , 128
Page 141 :
C++, , When a target value is indirectly pointed to by a pointer to a pointer, accessing, that value requires that the asterisk operator be applied twice, as is shown, below in the example:, #include <iostream>, , using namespace std;, , int main (), {, int, , var;, , int, , *ptr;, , int, , **pptr;, , var = 3000;, , // take the address of var, ptr = &var;, , // take the address of ptr using address of operator &, pptr = &ptr;, , // take the value using pptr, cout << "Value of var :" << var << endl;, cout << "Value available at *ptr :" << *ptr << endl;, cout << "Value available at **pptr :" << **pptr << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Value of var :3000, Value available at *ptr :3000, Value available at **pptr :3000, , 129
Page 142 :
C++, , Passing Pointers to Functions, C++ allows you to pass a pointer to a function. To do so, simply declare the, function parameter as a pointer type., Following a simple example where we pass an unsigned long pointer to a, function and change the value inside the function which reflects back in the, calling function:, #include <iostream>, #include <ctime>, , using namespace std;, void getSeconds(unsigned long *par);, , int main (), {, unsigned long sec;, , getSeconds( &sec );, , // print the actual value, cout << "Number of seconds :" << sec << endl;, , return 0;, }, , void getSeconds(unsigned long *par), {, // get the current number of seconds, *par = time( NULL );, return;, }, When the above code is compiled and executed, it produces the following result:, Number of seconds :1294450468, 130
Page 143 :
C++, , The function which can accept a pointer, can also accept an array as shown in, the following example:, #include <iostream>, using namespace std;, , // function declaration:, double getAverage(int *arr, int size);, , int main (), {, // an int array with 5 elements., int balance[5] = {1000, 2, 3, 17, 50};, double avg;, , // pass pointer to the array as an argument., avg = getAverage( balance, 5 ) ;, , // output the returned value, cout << "Average value is: " << avg << endl;, , return 0;, }, , double getAverage(int *arr, int size), {, int, , i, sum = 0;, , double avg;, , for (i = 0; i < size; ++i), {, sum += arr[i];, }, , avg = double(sum) / size;, 131
Page 144 :
C++, , return avg;, }, When the above code is compiled together and executed, it produces the, following result:, Average value is: 214.4, , Return Pointer from Functions, As we have seen in last chapter how C++ allows to return an array from a, function, similar way C++ allows you to return a pointer from a function. To do, so, you would have to declare a function returning a pointer as in the following, example:, int * myFunction(), {, ., ., ., }, Second point to remember is that, it is not good idea to return the address of a, local variable to outside of the function, so you would have to define the local, variable as staticvariable., Now, consider the following function, which will generate 10 random numbers, and return them using an array name which represents a pointer i.e., address of, first array element., #include <iostream>, #include <ctime>, , using namespace std;, , // function to generate and retrun random numbers., int * getRandom( ), {, static int, , r[10];, 132
Page 145 :
C++, , // set the seed, srand( (unsigned)time( NULL ) );, for (int i = 0; i < 10; ++i), {, r[i] = rand();, cout << r[i] << endl;, }, , return r;, }, , // main function to call above defined function., int main (), {, // a pointer to an int., int *p;, , p = getRandom();, for ( int i = 0; i < 10; i++ ), {, cout << "*(p + " << i << ") : ";, cout << *(p + i) << endl;, }, , return 0;, }, When the above code is compiled together and executed, it produces result, something as follows:, 624723190, 1468735695, 807113585, 976495677, 133
Page 146 :
C++, , 613357504, 1377296355, 1530315259, 1778906708, 1820354158, 667126415, *(p + 0) : 624723190, *(p + 1) : 1468735695, *(p + 2) : 807113585, *(p + 3) : 976495677, *(p + 4) : 613357504, *(p + 5) : 1377296355, *(p + 6) : 1530315259, *(p + 7) : 1778906708, *(p + 8) : 1820354158, *(p + 9) : 667126415, , 134
Page 147 :
19. REFERENCES, , C++, , A reference variable is an alias, that is, another name for an already existing, variable. Once a reference is initialized with a variable, either the variable name, or the reference name may be used to refer to the variable., References vs Pointers, References are often confused with pointers but three major differences between, references and pointers are:, , , You cannot have NULL references. You must always be able to assume, that a reference is connected to a legitimate piece of storage., , , , Once a reference is initialized to an object, it cannot be changed to refer, to another object. Pointers can be pointed to another object at any time., , , , A reference must be initialized when it is created. Pointers can be, initialized at any time., , Creating References in C++, Think of a variable name as a label attached to the variable's location in, memory. You can then think of a reference as a second label attached to that, memory location. Therefore, you can access the contents of the variable through, either the original variable name or the reference. For example, suppose we, have the following example:, int, , i = 17;, , We can declare reference variables for i as follows., int&, , r = i;, , Read the & in these declarations as reference. Thus, read the first declaration, as "r is an integer reference initialized to i" and read the second declaration as "s, is a double reference initialized to d." Following example makes use of, references on int and double:, #include <iostream>, , using namespace std;, , int main (), {, 135
Page 148 :
C++, , // declare simple variables, int, , i;, , double d;, , // declare reference variables, int&, , r = i;, , double& s = d;, , i = 5;, cout << "Value of i : " << i << endl;, cout << "Value of i reference : " << r, , << endl;, , d = 11.7;, cout << "Value of d : " << d << endl;, cout << "Value of d reference : " << s, , << endl;, , return 0;, }, When the above code is compiled together and executed, it produces the, following result:, Value of i : 5, Value of i reference : 5, Value of d : 11.7, Value of d reference : 11.7, References are usually used for function argument lists and function return, values. So following are two important subjects related to C++ references which, should be clear to a C++ programmer:, Concept, , Description, , References as parameters, , C++ supports passing references as function, parameter more safely than parameters., , Reference as return value, , You can return reference from a C++ function, , 136
Page 149 :
C++, , like any other data type., , References as Parameters, We have discussed how we implement call by reference concept using, pointers. Here is another example of call by reference which makes use of C++, reference:, #include <iostream>, using namespace std;, , // function declaration, void swap(int& x, int& y);, , int main (), {, // local variable declaration:, int a = 100;, int b = 200;, , cout << "Before swap, value of a :" << a << endl;, cout << "Before swap, value of b :" << b << endl;, , /* calling a function to swap the values.*/, swap(a, b);, , cout << "After swap, value of a :" << a << endl;, cout << "After swap, value of b :" << b << endl;, , return 0;, }, , // function definition to swap the values., void swap(int& x, int& y), {, 137
Page 150 :
C++, , int temp;, temp = x; /* save the value at address x */, x = y;, , /* put y into x */, , y = temp; /* put x into y */, , return;, }, When the above code is compiled and executed, it produces the following result:, Before swap, value of a :100, Before swap, value of b :200, After swap, value of a :200, After swap, value of b :100, Reference as Return Value, A C++ program can be made easier to read and maintain by using references, rather than pointers. A C++ function can return a reference in a similar way as it, returns a pointer., When a function returns a reference, it returns an implicit pointer to its return, value. This way, a function can be used on the left side of an assignment, statement. For example, consider this simple program:, #include <iostream>, #include <ctime>, , using namespace std;, , double vals[] = {10.1, 12.6, 33.1, 24.1, 50.0};, , double& setValues( int i ), {, return vals[i];, , // return a reference to the ith element, , }, , // main function to call above defined function., int main (), 138
Page 152 :
C++, , vals[4] = 50, When returning a reference, be careful that the object being referred to does not, go out of scope. So it is not legal to return a reference to local var. But you can, always return a reference on a static variable., int& func() {, int q;, //! return q; // Compile time error, static int x;, return x;, , // Safe, x lives outside this scope, , }, , 140
Page 153 :
20. DATE AND TIME, , C++, , The C++ standard library does not provide a proper date type. C++ inherits the, structs and functions for date and time manipulation from C. To access date and, time related functions and structures, you would need to include <ctime>, header file in your C++ program., There are four time-related types: clock_t, time_t, size_t, and tm. The types clock_t, size_t and time_t are capable of representing the system time and date, as some sort of integer., The structure type tm holds the date and time in the form of a C structure, having the following elements:, struct tm {, int tm_sec;, , // seconds of minutes from 0 to 61, , int tm_min;, , // minutes of hour from 0 to 59, , int tm_hour;, , // hours of day from 0 to 24, , int tm_mday;, , // day of month from 1 to 31, , int tm_mon;, , // month of year from 0 to 11, , int tm_year;, , // year since 1900, , int tm_wday;, , // days since sunday, , int tm_yday;, , // days since January 1st, , int tm_isdst; // hours of daylight savings time, }, Following are the important functions, which we use while working with date and, time in C or C++. All these functions are part of standard C and C++ library and, you can check their detail using reference to C++ standard library given below., SN, , Function & Purpose, , 1, , time_t time(time_t *time);, This returns the current calendar time of the system in number of, seconds elapsed since January 1, 1970. If the system has no time, .1 is, returned., , 2, , char *ctime(const time_t *time);, This returns a pointer to a string of the form day month year, 141
Page 154 :
C++, , hours:minutes:seconds year\n\0., 3, , struct tm *localtime(const time_t *time);, This returns a pointer to the tm structure representing local time., , 4, , clock_t clock(void);, This returns a value that approximates the amount of time the calling, program has been running. A value of .1 is returned if the time is not, available., , 5, , char * asctime ( const struct tm * time );, This returns a pointer to a string that contains the information stored in, the structure pointed to by time converted into the form: day month date, hours:minutes:seconds year\n\0, , 6, , struct tm *gmtime(const time_t *time);, This returns a pointer to the time in the form of a tm structure. The time, is represented in Coordinated Universal Time (UTC), which is essentially, Greenwich Mean Time (GMT)., , 7, , time_t mktime(struct tm *time);, This returns the calendar-time equivalent of the time found in the, structure pointed to by time., , 8, , double difftime ( time_t time2, time_t time1 );, This function calculates the difference in seconds between time1 and, time2., , 9, , size_t strftime();, This function can be used to format date and time in a specific format., , Current Date and Time, Suppose you want to retrieve the current system date and time, either as a local, time or as a Coordinated Universal Time (UTC). Following is the example to, achieve the same:, #include <iostream>, #include <ctime>, 142
Page 155 :
C++, , using namespace std;, , int main( ), {, // current date/time based on current system, time_t now = time(0);, , // convert now to string form, char* dt = ctime(&now);, , cout << "The local date and time is: " << dt << endl;, , // convert now to tm struct for UTC, tm *gmtm = gmtime(&now);, dt = asctime(gmtm);, cout << "The UTC date and time is:"<< dt << endl;, }, When the above code is compiled and executed, it produces the following result:, The local date and time is: Sat Jan, , The UTC date and time is:Sun Jan, , 8 20:07:41 2011, , 9 03:07:41 2011, , Format Time using struct tm, The tm structure is very important while working with date and time in either C, or C++. This structure holds the date and time in the form of a C structure as, mentioned above. Most of the time related functions makes use of tm structure., Following is an example which makes use of various date and time related, functions and tm structure:, While using structure in this chapter, I'm making an assumption that you have, basic understanding on C structure and how to access structure members using, arrow -> operator., , #include <iostream>, #include <ctime>, 143
Page 157 :
21. BASIC INPUT/OUTPUT, , C++, , The C++ standard libraries provide an extensive set of input/output capabilities, which we will see in subsequent chapters. This chapter will discuss very basic, and most common I/O operations required for C++ programming., C++ I/O occurs in streams, which are sequences of bytes. If bytes flow from a, device like a keyboard, a disk drive, or a network connection etc. to main, memory, this is called input operation and if bytes flow from main memory to a, device like a display screen, a printer, a disk drive, or a network connection,, etc., this is called output operation., I/O Library Header Files, There are following header files important to C++ programs:, Header File, , Function and Description, , <iostream>, , This file defines the cin, cout, cerr and clog objects, which, correspond to the standard input stream, the standard output, stream, the un-buffered standard error stream and the, buffered standard error stream, respectively., , <iomanip>, , This file declares services useful for performing formatted I/O, with so-called parameterized stream manipulators, such, as setw and setprecision., , <fstream>, , This file declares services for user-controlled file processing., We will discuss about it in detail in File and Stream related, chapter., , The Standard Output Stream (cout), The predefined object cout is an instance of ostream class. The cout object is, said to be "connected to" the standard output device, which usually is the, display screen. The cout is used in conjunction with the stream insertion, operator, which is written as << which are two less than signs as shown in the, following example., , #include <iostream>, 145
Page 158 :
C++, , using namespace std;, , int main( ), {, char str[] = "Hello C++";, , cout << "Value of str is : " << str << endl;, }, When the above code is compiled and executed, it produces the following result:, Value of str is : Hello C++, The C++ compiler also determines the data type of variable to be output and, selects the appropriate stream insertion operator to display the value. The <<, operator is overloaded to output data items of built-in types integer, float,, double, strings and pointer values., The insertion operator << may be used more than once in a single statement as, shown above and endl is used to add a new-line at the end of the line., The Standard Input Stream (cin), The predefined object cin is an instance of istream class. The cin object is said, to be attached to the standard input device, which usually is the keyboard., The cin is used in conjunction with the stream extraction operator, which is, written as >> which are two greater than signs as shown in the following, example., #include <iostream>, , using namespace std;, , int main( ), {, char name[50];, , cout << "Please enter your name: ";, cin >> name;, cout << "Your name is: " << name << endl;, , 146
Page 159 :
C++, , }, When the above code is compiled and executed, it will prompt you to enter a, name. You enter a value and then hit enter to see the following result:, Please enter your name: cplusplus, Your name is: cplusplus, The C++ compiler also determines the data type of the entered value and, selects the appropriate stream extraction operator to extract the value and store, it in the given variables., The stream extraction operator >> may be used more than once in a single, statement. To request more than one datum you can use the following:, cin >> name >> age;, This will be equivalent to the following two statements:, cin >> name;, cin >> age;, The Standard Error Stream (cerr), The predefined object cerr is an instance of ostream class. The cerr object is, said to be attached to the standard error device, which is also a display screen, but the object cerr is un-buffered and each stream insertion to cerr causes its, output to appear immediately., The cerr is also used in conjunction with the stream insertion operator as shown, in the following example., #include <iostream>, , using namespace std;, , int main( ), {, char str[] = "Unable to read....";, , cerr << "Error message : " << str << endl;, }, When the above code is compiled and executed, it produces the following result:, 147
Page 160 :
C++, , Error message : Unable to read...., The Standard Log Stream (clog), The predefined object clog is an instance of ostream class. The clog object is, said to be attached to the standard error device, which is also a display screen, but the object clog is buffered. This means that each insertion to clog could, cause its output to be held in a buffer until the buffer is filled or until the buffer, is flushed., The clog is also used in conjunction with the stream insertion operator as shown, in the following example., #include <iostream>, , using namespace std;, , int main( ), {, char str[] = "Unable to read....";, , clog << "Error message : " << str << endl;, }, When the above code is compiled and executed, it produces the following result:, Error message : Unable to read...., You would not be able to see any difference in cout, cerr and clog with these, small examples, but while writing and executing big programs the difference, becomes obvious. So it is good practice to display error messages using cerr, stream and while displaying other log messages then clog should be used., , 148
Page 161 :
22. DATA STRUCTURES, , C++, , C/C++ arrays allow you to define variables that combine several data items of, the same kind, but structure is another user defined data type which allows you, to combine data items of different kinds., Structures are used to represent a record, suppose you want to keep track of, your books in a library. You might want to track the following attributes about, each book:, , , Title, , , , Author, , , , Subject, , , , Book ID, , Defining a Structure, To define a structure, you must use the struct statement. The struct statement, defines a new data type, with more than one member, for your program. The, format of the struct statement is this:, struct [structure tag], {, member definition;, member definition;, ..., member definition;, } [one or more structure variables];, The structure tag is optional and each member definition is a normal variable, definition, such as int i; or float f; or any other valid variable definition. At the, end of the structure's definition, before the final semicolon, you can specify one, or more structure variables but it is optional. Here is the way you would declare, the Book structure:, struct Books, {, char, , title[50];, , char, , author[50];, , char, , subject[100];, 149
Page 162 :
C++, , int, , book_id;, , }book;, Accessing Structure Members, To access any member of a structure, we use the member access operator, (.). The member access operator is coded as a period between the structure, variable name and the structure member that we wish to access. You would, use struct keyword to define variables of structure type. Following is the, example to explain usage of structure:, #include <iostream>, #include <cstring>, , using namespace std;, , struct Books, {, char, , title[50];, , char, , author[50];, , char, , subject[100];, , int, , book_id;, , };, , int main( ), {, struct Books Book1;, , // Declare Book1 of type Book, , struct Books Book2;, , // Declare Book2 of type Book, , // book 1 specification, strcpy( Book1.title, "Learn C++ Programming");, strcpy( Book1.author, "Chand Miyan");, strcpy( Book1.subject, "C++ Programming");, Book1.book_id = 6495407;, , // book 2 specification, strcpy( Book2.title, "Telecom Billing");, 150
Page 165 :
C++, , return 0;, }, void printBook( struct Books book ), {, cout << "Book title : " << book.title <<endl;, cout << "Book author : " << book.author <<endl;, cout << "Book subject : " << book.subject <<endl;, cout << "Book id : " << book.book_id <<endl;, }, When the above code is compiled and executed, it produces the following result:, Book title : Learn C++ Programming, Book author : Chand Miyan, Book subject : C++ Programming, Book id : 6495407, Book title : Telecom Billing, Book author : Yakit Singha, Book subject : Telecom, Book id : 6495700, Pointers to Structures, You can define pointers to structures in very similar way as you define pointer to, any other variable as follows:, struct Books *struct_pointer;, Now, you can store the address of a structure variable in the above defined, pointer variable. To find the address of a structure variable, place the ‘&’, operator before the structure's name as follows:, struct_pointer = &Book1;, To access the members of a structure using a pointer to that structure, you must, use the -> operator as follows:, struct_pointer->title;, Let us re-write above example using structure pointer, hope this will be easy for, you to understand the concept:, 153
Page 167 :
C++, , // Print Book1 info, passing address of structure, printBook( &Book2 );, , return 0;, }, // This function accept pointer to structure as parameter., void printBook( struct Books *book ), {, cout << "Book title : " << book->title <<endl;, cout << "Book author : " << book->author <<endl;, cout << "Book subject : " << book->subject <<endl;, cout << "Book id : " << book->book_id <<endl;, }, When the above code is compiled and executed, it produces the following result:, Book title : Learn C++ Programming, Book author : Chand Miyan, Book subject : C++ Programming, Book id : 6495407, Book title : Telecom Billing, Book author : Yakit Singha, Book subject : Telecom, Book id : 6495700, The typedef Keyword, There is an easier way to define structs or you could "alias" types you create., For example:, typedef struct, {, char, , title[50];, , char, , author[50];, , char, , subject[100];, , int, , book_id;, , }Books;, 155
Page 168 :
C++, , Now, you can use Books directly to define variables of Books type without using, struct keyword. Following is the example:, Books Book1, Book2;, You can use typedef keyword for non-structs as well as follows:, typedef long int *pint32;, , pint32 x, y, z;, x, y and z are all pointers to long ints., , 156
Page 169 :
23. CLASSES AND OBJECTS, , C++, , The main purpose of C++ programming is to add object orientation to the C, programming language and classes are the central feature of C++ that supports, object-oriented programming and are often called user-defined types., A class is used to specify the form of an object and it combines data, representation and methods for manipulating that data into one neat package., The data and functions within a class are called members of the class., C++ Class Definitions, When you define a class, you define a blueprint for a data type. This doesn't, actually define any data, but it does define what the class name means, that is,, what an object of the class will consist of and what operations can be performed, on such an object., A class definition starts with the keyword class followed by the class name; and, the class body, enclosed by a pair of curly braces. A class definition must be, followed either by a semicolon or a list of declarations. For example, we define, the Box data type using the keyword class as follows:, class Box, {, public:, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , };, The keyword public determines the access attributes of the members of the, class that follows it. A public member can be accessed from outside the class, anywhere within the scope of the class object. You can also specify the members, of a class as private or protected which we will discuss in a sub-section., Define C++ Objects, A class provides the blueprints for objects, so basically an object is created from, a class. We declare objects of a class with exactly the same sort of declaration, that we declare variables of basic types. Following statements declare two, objects of class Box:, Box Box1;, , // Declare Box1 of type Box, , Box Box2;, , // Declare Box2 of type Box, 157
Page 170 :
C++, , Both of the objects Box1 and Box2 will have their own copy of data members., Accessing the Data Members, The public data members of objects of a class can be accessed using the direct, member access operator (.). Let us try the following example to make the things, clear:, #include <iostream>, , using namespace std;, , class Box, {, public:, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , };, , int main( ), {, Box Box1;, , // Declare Box1 of type Box, , Box Box2;, , // Declare Box2 of type Box, , double volume = 0.0;, , // Store the volume of a box here, , // box 1 specification, Box1.height = 5.0;, Box1.length = 6.0;, Box1.breadth = 7.0;, , // box 2 specification, Box2.height = 10.0;, Box2.length = 12.0;, Box2.breadth = 13.0;, // volume of box 1, volume = Box1.height * Box1.length * Box1.breadth;, 158
Page 171 :
C++, , cout << "Volume of Box1 : " << volume <<endl;, , // volume of box 2, volume = Box2.height * Box2.length * Box2.breadth;, cout << "Volume of Box2 : " << volume <<endl;, return 0;, }, When the above code is compiled and executed, it produces the following result:, Volume of Box1 : 210, Volume of Box2 : 1560, It is important to note that private and protected members cannot be accessed, directly using direct member access operator (.). We will learn how private and, protected members can be accessed., Classes & Objects in Detail, So far, you have got very basic idea about C++ Classes and Objects. There are, further interesting concepts related to C++ Classes and Objects which we will, discuss in various sub-sections listed below:, Concept, , Description, , Class member functions, , A member function of a class is a function that, has its definition or its prototype within the, class definition like any other variable., , Class access modifiers, , A class member can be defined as public,, private or protected. By default members, would be assumed as private., , Constructor & destructor, , A class constructor is a special function in a, class that is called when a new object of the, class is created. A destructor is also a special, function which is called when created object is, deleted., , C++ copy constructor, , The copy constructor is a constructor which, creates an object by initializing it with an, object of the same class, which has been, 159
Page 172 :
C++, , created previously., C++ friend functions, , A friend function is permitted full access to, private and protected members of a class., , C++ inline functions, , With an inline function, the compiler tries to, expand the code in the body of the function in, place of a call to the function., , The this pointer in C++, , Every object has a special pointer this which, points to the object itself., , Pointer to C++ classes, , A pointer to a class is done exactly the same, way a pointer to a structure is. In fact a class, is really just a structure with functions in it., , Static members of a class, , Both data members and function members of, a class can be declared as static., , Class member functions, A member function of a class is a function that has its definition or its prototype, within the class definition like any other variable. It operates on any object of, the class of which it is a member, and has access to all the members of a class, for that object., Let us take previously defined class to access the members of the class using a, member function instead of directly accessing them:, class Box, {, public:, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , double getVolume(void);// Returns box volume, };, Member functions can be defined within the class definition or separately, using scope resolution operator, ::. Defining a member function within the, 160
Page 173 :
C++, , class definition declares the function inline, even if you do not use the inline, specifier. So either you can defineVolume() function as below:, class Box, {, public:, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , double getVolume(void), {, return length * breadth * height;, }, };, If you like, you can define the same function outside the class using the scope, resolution operator (::) as follows:, double Box::getVolume(void), {, return length * breadth * height;, }, Here, only important point is that you would have to use class name just before, :: operator. A member function will be called using a dot operator (.) on a object, where it will manipulate data related to that object only as follows:, Box myBox;, , // Create an object, , myBox.getVolume();, , // Call member function for the object, , Let us put above concepts to set and get the value of different class members in, a class:, #include <iostream>, , using namespace std;, , class Box, 161
Page 176 :
C++, , internal representation of a class type. The access restriction to the class, members is specified by the labeled public, private, and protected sections, within the class body. The keywords public, private, and protected are called, access specifiers., A class can have multiple public, protected, or private labeled sections. Each, section remains in effect until either another section label or the closing right, brace of the class body is seen. The default access for members and classes is, private., class Base {, , public:, , // public members go here, , protected:, , // protected members go here, , private:, , // private members go here, , };, The public Members, A public member is accessible from anywhere outside the class but within a, program. You can set and get the value of public variables without any member, function as shown in the following example:, #include <iostream>, , using namespace std;, , class Line, {, public:, double length;, 164
Page 177 :
C++, , void setLength( double len );, double getLength( void );, };, , // Member functions definitions, double Line::getLength(void), {, return length ;, }, , void Line::setLength( double len ), {, length = len;, }, , // Main function for the program, int main( ), {, Line line;, , // set line length, line.setLength(6.0);, cout << "Length of line : " << line.getLength() <<endl;, , // set line length without member function, line.length = 10.0; // OK: because length is public, cout << "Length of line : " << line.length <<endl;, return 0;, }, When the above code is compiled and executed, it produces the following result:, Length of line : 6, Length of line : 10, The private Members, 165
Page 178 :
C++, , A private member variable or function cannot be accessed, or even viewed from, outside the class. Only the class and friend functions can access private, members., By default all the members of a class would be private, for example in the, following classwidth is a private member, which means until you label a, member, it will be assumed a private member:, class Box, {, double width;, public:, double length;, void setWidth( double wid );, double getWidth( void );, };, , Practically, we define data in private section and related functions in public, section so that they can be called from outside of the class as shown in the, following program., #include <iostream>, , using namespace std;, , class Box, {, public:, double length;, void setWidth( double wid );, double getWidth( void );, , private:, double width;, };, , // Member functions definitions, double Box::getWidth(void), 166
Page 179 :
C++, , {, return width ;, }, , void Box::setWidth( double wid ), {, width = wid;, }, , // Main function for the program, int main( ), {, Box box;, , // set box length without member function, box.length = 10.0; // OK: because length is public, cout << "Length of box : " << box.length <<endl;, , // set box width without member function, // box.width = 10.0; // Error: because width is private, box.setWidth(10.0);, , // Use member function to set it., , cout << "Width of box : " << box.getWidth() <<endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Length of box : 10, Width of box : 10, The protected Members, A protected member variable or function is very similar to a private member, but it provided one additional benefit that they can be accessed in child classes, which are called derived classes., , 167
Page 180 :
C++, , You will learn derived classes and inheritance in next chapter. For now you can, check following example where I have derived one child class SmallBox from a, parent class Box., Following example is similar to above example and here width member will be, accessible by any member function of its derived class SmallBox., #include <iostream>, using namespace std;, , class Box, {, protected:, double width;, };, , class SmallBox:Box // SmallBox is the derived class., {, public:, void setSmallWidth( double wid );, double getSmallWidth( void );, };, , // Member functions of child class, double SmallBox::getSmallWidth(void), {, return width ;, }, , void SmallBox::setSmallWidth( double wid ), {, width = wid;, }, , // Main function for the program, int main( ), {, , 168
Page 181 :
C++, , SmallBox box;, , // set box width using member function, box.setSmallWidth(5.0);, cout << "Width of box : "<< box.getSmallWidth() << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Width of box : 5, Constructor & Destructor, A class constructor is a special member function of a class that is executed, whenever we create new objects of that class., A constructor will have exact same name as the class and it does not have any, return type at all, not even void. Constructors can be very useful for setting, initial values for certain member variables., Following example explains the concept of constructor:, #include <iostream>, , using namespace std;, , class Line, {, public:, void setLength( double len );, double getLength( void );, Line();, , // This is the constructor, , private:, double length;, };, , // Member functions definitions including constructor, 169
Page 182 :
C++, , Line::Line(void), {, cout << "Object is being created" << endl;, }, , void Line::setLength( double len ), {, length = len;, }, , double Line::getLength( void ), {, return length;, }, // Main function for the program, int main( ), {, Line line;, , // set line length, line.setLength(6.0);, cout << "Length of line : " << line.getLength() <<endl;, , return 0;, }, , When the above code is compiled and executed, it produces the following result:, Object is being created, Length of line : 6, Parameterized Constructor, A default constructor does not have any parameter, but if you need, a, constructor can have parameters. This helps you to assign initial value to an, object at the time of its creation as shown in the following example:, 170
Page 184 :
C++, , Line line(10.0);, , // get initially set length., cout << "Length of line : " << line.getLength() <<endl;, // set line length again, line.setLength(6.0);, cout << "Length of line : " << line.getLength() <<endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Object is being created, length = 10, Length of line : 10, Length of line : 6, , Using Initialization Lists to Initialize Fields, In case of parameterized constructor, you can use following syntax to initialize, the fields:, Line::Line( double len): length(len), {, cout << "Object is being created, length = " << len << endl;, }, Above syntax is equal to the following syntax:, Line::Line( double len), {, cout << "Object is being created, length = " << len << endl;, length = len;, }, If for a class C, you have multiple fields X, Y, Z, etc., to be initialized, then use, can use same syntax and separate the fields by comma as follows:, C::C( double a, double b, double c): X(a), Y(b), Z(c), {, 172
Page 185 :
C++, , ...., }, The Class Destructor, A destructor is a special member function of a class that is executed whenever, an object of it's class goes out of scope or whenever the delete expression is, applied to a pointer to the object of that class., A destructor will have exact same name as the class prefixed with a tilde (~), and it can neither return a value nor can it take any parameters. Destructor can, be very useful for releasing resources before coming out of the program like, closing files, releasing memories etc., Following example explains the concept of destructor:, #include <iostream>, , using namespace std;, , class Line, {, public:, void setLength( double len );, double getLength( void );, Line();, , // This is the constructor declaration, , ~Line();, , // This is the destructor: declaration, , private:, double length;, };, , // Member functions definitions including constructor, Line::Line(void), {, cout << "Object is being created" << endl;, }, Line::~Line(void), {, 173
Page 186 :
C++, , cout << "Object is being deleted" << endl;, }, , void Line::setLength( double len ), {, length = len;, }, , double Line::getLength( void ), {, return length;, }, // Main function for the program, int main( ), {, Line line;, , // set line length, line.setLength(6.0);, cout << "Length of line : " << line.getLength() <<endl;, , return 0;, }, , When the above code is compiled and executed, it produces the following result:, Object is being created, Length of line : 6, Object is being deleted, Copy Constructor, , 174
Page 187 :
C++, , The copy constructor is a constructor which creates an object by initializing it, with an object of the same class, which has been created previously. The copy, constructor is used to:, , , Initialize one object from another of the same type., , , , Copy an object to pass it as an argument to a function., , , , Copy an object to return it from a function., , If a copy constructor is not defined in a class, the compiler itself defines one.If, the class has pointer variables and has some dynamic memory allocations, then, it is a must to have a copy constructor. The most common form of copy, constructor is shown here:, classname (const classname &obj) {, // body of constructor, }, Here, obj is a reference to an object that is being used to initialize another, object., #include <iostream>, , using namespace std;, , class Line, {, public:, int getLength( void );, Line( int len );, Line( const Line &obj);, ~Line();, , // simple constructor, // copy constructor, // destructor, , private:, int *ptr;, };, , // Member functions definitions including constructor, Line::Line(int len), {, 175
Page 189 :
C++, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Normal constructor allocating ptr, Copy constructor allocating ptr., Length of line : 10, Freeing memory!, Freeing memory!, Let us see the same example but with a small change to create another object, using existing object of the same type:, #include <iostream>, , using namespace std;, , class Line, {, public:, int getLength( void );, Line( int len );, Line( const Line &obj);, ~Line();, , // simple constructor, // copy constructor, // destructor, , private:, int *ptr;, };, , // Member functions definitions including constructor, Line::Line(int len), {, cout << "Normal constructor allocating ptr" << endl;, // allocate memory for the pointer;, ptr = new int;, 177
Page 191 :
C++, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Normal constructor allocating ptr, Copy constructor allocating ptr., Copy constructor allocating ptr., Length of line : 10, Freeing memory!, Copy constructor allocating ptr., Length of line : 10, Freeing memory!, Freeing memory!, Freeing memory!, Friend Functions, A friend function of a class is defined outside that class' scope but it has the, right to access all private and protected members of the class. Even though the, prototypes for friend functions appear in the class definition, friends are not, member functions., A friend can be a function, function template, or member function, or a class or, class template, in which case the entire class and all of its members are friends., To declare a function as a friend of a class, precede the function prototype in the, class definition with keyword friend as follows:, class Box, {, double width;, public:, double length;, friend void printWidth( Box box );, void setWidth( double wid );, };, To declare all member functions of class ClassTwo as friends of class ClassOne,, place a following declaration in the definition of class ClassOne:, 179
Page 192 :
C++, , friend class ClassTwo;, Consider the following program:, #include <iostream>, , using namespace std;, , class Box, {, double width;, public:, friend void printWidth( Box box );, void setWidth( double wid );, };, , // Member function definition, void Box::setWidth( double wid ), {, width = wid;, }, , // Note: printWidth() is not a member function of any class., void printWidth( Box box ), {, /* Because printWidth() is a friend of Box, it can, directly access any member of this class */, cout << "Width of box : " << box.width <<endl;, }, , // Main function for the program, int main( ), {, Box box;, , 180
Page 193 :
C++, , // set box width without member function, box.setWidth(10.0);, , // Use friend function to print the wdith., printWidth( box );, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Width of box : 10, Inline Functions, C++ inline function is powerful concept that is commonly used with classes. If a, function is inline, the compiler places a copy of the code of that function at each, point where the function is called at compile time., Any change to an inline function could require all clients of the function to be, recompiled because compiler would need to replace all the code once again, otherwise it will continue with old functionality., To inline a function, place the keyword inline before the function name and, define the function before any calls are made to the function. The compiler can, ignore the inline qualifier in case defined function is more than a line., A function definition in a class definition is an inline function definition, even, without the use of the inline specifier., Following is an example, which makes use of inline function to return max of two, numbers:, #include <iostream>, , using namespace std;, , inline int Max(int x, int y), {, return (x > y)? x : y;, }, , // Main function for the program, 181
Page 194 :
C++, , int main( ), {, , cout << "Max (20,10): " << Max(20,10) << endl;, cout << "Max (0,200): " << Max(0,200) << endl;, cout << "Max (100,1010): " << Max(100,1010) << endl;, return 0;, }, When the above code is compiled and executed, it produces the following result:, Max (20,10): 20, Max (0,200): 200, Max (100,1010): 1010, this Pointer, Every object in C++ has access to its own address through an important pointer, called thispointer. The this pointer is an implicit parameter to all member, functions. Therefore, inside a member function, this may be used to refer to the, invoking object., Friend functions do not have a this pointer, because friends are not members of, a class. Only member functions have a this pointer., Let us try the following example to understand the concept of this pointer:, #include <iostream>, , using namespace std;, , class Box, {, public:, // Constructor definition, Box(double l=2.0, double b=2.0, double h=2.0), {, cout <<"Constructor called." << endl;, length = l;, breadth = b;, 182
Page 195 :
C++, , height = h;, }, double Volume(), {, return length * breadth * height;, }, int compare(Box box), {, return this->Volume() > box.Volume();, }, private:, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , };, , int main(void), {, Box Box1(3.3, 1.2, 1.5);, , // Declare box1, , Box Box2(8.5, 6.0, 2.0);, , // Declare box2, , if(Box1.compare(Box2)), {, cout << "Box2 is smaller than Box1" <<endl;, }, else, {, cout << "Box2 is equal to or larger than Box1" <<endl;, }, return 0;, }, When the above code is compiled and executed, it produces the following result:, Constructor called., 183
Page 196 :
C++, , Constructor called., Box2 is equal to or larger than Box1, , Pointer to C++ Classes, A pointer to a C++ class is done exactly the same way as a pointer to a, structure and to access members of a pointer to a class you use the member, access operator -> operator, just as you do with pointers to structures. Also as, with all pointers, you must initialize the pointer before using it., Let us try the following example to understand the concept of pointer to a class:, #include <iostream>, , using namespace std;, , class Box, {, public:, // Constructor definition, Box(double l=2.0, double b=2.0, double h=2.0), {, cout <<"Constructor called." << endl;, length = l;, breadth = b;, height = h;, }, double Volume(), {, return length * breadth * height;, }, private:, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , };, 184
Page 197 :
C++, , int main(void), {, Box Box1(3.3, 1.2, 1.5);, , // Declare box1, , Box Box2(8.5, 6.0, 2.0);, , // Declare box2, , Box *ptrBox;, , // Declare pointer to a class., , // Save the address of first object, ptrBox = &Box1;, , // Now try to access a member using member access operator, cout << "Volume of Box1: " << ptrBox->Volume() << endl;, , // Save the address of first object, ptrBox = &Box2;, , // Now try to access a member using member access operator, cout << "Volume of Box2: " << ptrBox->Volume() << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Constructor called., Constructor called., Volume of Box1: 5.94, Volume of Box2: 102, Static Members of a Class, We can define class members static using static keyword. When we declare a, member of a class as static it means no matter how many objects of the class, are created, there is only one copy of the static member., A static member is shared by all objects of the class. All static data is initialized, to zero when the first object is created, if no other initialization is present. We, can't put it in the class definition but it can be initialized outside the class as, done in the following example by redeclaring the static variable, using the scope, resolution operator :: to identify which class it belongs to., 185
Page 198 :
C++, , Let us try the following example to understand the concept of static data, members:, #include <iostream>, , using namespace std;, , class Box, {, public:, static int objectCount;, // Constructor definition, Box(double l=2.0, double b=2.0, double h=2.0), {, cout <<"Constructor called." << endl;, length = l;, breadth = b;, height = h;, // Increase every time object is created, objectCount++;, }, double Volume(), {, return length * breadth * height;, }, private:, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , };, , // Initialize static member of class Box, int Box::objectCount = 0;, , int main(void), 186
Page 199 :
C++, , {, Box Box1(3.3, 1.2, 1.5);, , // Declare box1, , Box Box2(8.5, 6.0, 2.0);, , // Declare box2, , // Print total number of objects., cout << "Total objects: " << Box::objectCount << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Constructor called., Constructor called., Total objects: 2, Static Function Members, By declaring a function member as static, you make it independent of any, particular object of the class. A static member function can be called even if no, objects of the class exist and the static functions are accessed using only the, class name and the scope resolution operator ::., A static member function can only access static data member, other static, member functions and any other functions from outside the class., Static member functions have a class scope and they do not have access to, the this pointer of the class. You could use a static member function to, determine whether some objects of the class have been created or not., Let us try the following example to understand the concept of static function, members:, #include <iostream>, , using namespace std;, , class Box, {, public:, static int objectCount;, // Constructor definition, 187
Page 200 :
C++, , Box(double l=2.0, double b=2.0, double h=2.0), {, cout <<"Constructor called." << endl;, length = l;, breadth = b;, height = h;, // Increase every time object is created, objectCount++;, }, double Volume(), {, return length * breadth * height;, }, static int getCount(), {, return objectCount;, }, private:, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , };, , // Initialize static member of class Box, int Box::objectCount = 0;, , int main(void), {, , // Print total number of objects before creating object., cout << "Inital Stage Count: " << Box::getCount() << endl;, , Box Box1(3.3, 1.2, 1.5);, , // Declare box1, , Box Box2(8.5, 6.0, 2.0);, , // Declare box2, 188
Page 201 :
C++, , // Print total number of objects after creating object., cout << "Final Stage Count: " << Box::getCount() << endl;, , return 0;, }, , When the above code is compiled and executed, it produces the following result:, Inital Stage Count: 0, Constructor called., Constructor called., Final Stage Count: 2, , 189
Page 202 :
24. INHERITANCE, , C++, , One of the most important concepts in object-oriented programming is that of, inheritance. Inheritance allows us to define a class in terms of another class,, which makes it easier to create and maintain an application. This also provides, an opportunity to reuse the code functionality and fast implementation time., When creating a class, instead of writing completely new data members and, member functions, the programmer can designate that the new class should, inherit the members of an existing class. This existing class is called, the base class, and the new class is referred to as the derived class., The idea of inheritance implements the is a relationship. For example, mammal, IS-A animal, dog IS-A mammal hence dog IS-A animal as well and so on., Base & Derived Classes, A class can be derived from more than one classes, which means it can inherit, data and functions from multiple base classes. To define a derived class, we use, a class derivation list to specify the base class(es). A class derivation list names, one or more base classes and has the form:, class derived-class: access-specifier base-class, Where access-specifier is one of public, protected, or private, and base-class, is the name of a previously defined class. If the access-specifier is not used,, then it is private by default., Consider a base class Shape and its derived class Rectangle as follows:, #include <iostream>, , using namespace std;, , // Base class, class Shape, {, public:, void setWidth(int w), {, width = w;, }, 190
Page 203 :
C++, , void setHeight(int h), {, height = h;, }, protected:, int width;, int height;, };, , // Derived class, class Rectangle: public Shape, {, public:, int getArea(), {, return (width * height);, }, };, , int main(void), {, Rectangle Rect;, , Rect.setWidth(5);, Rect.setHeight(7);, , // Print the area of the object., cout << "Total area: " << Rect.getArea() << endl;, , return 0;, }, , When the above code is compiled and executed, it produces the following result:, 191
Page 204 :
C++, , Total area: 35, Access Control and Inheritance, A derived class can access all the non-private members of its base class. Thus, base-class members that should not be accessible to the member functions of, derived classes should be declared private in the base class., We can summarize the different access types according to - who can access, them, in the following way:, Access, , public, , protected, , private, , Same class, , yes, , yes, , yes, , Derived classes, , yes, , yes, , no, , Outside classes, , yes, , no, , no, , A derived class inherits all base class methods with the following exceptions:, , , Constructors, destructors and copy constructors of the base class., , , , Overloaded operators of the base class., , , , The friend functions of the base class., , Type of Inheritance, When deriving a class from a base class, the base class may be inherited, through public, protected or private inheritance. The type of inheritance is, specified by the access-specifier as explained above., We hardly use protected or private inheritance, but public inheritance is, commonly used. While using different type of inheritance, following rules are, applied:, , , Public Inheritance: When deriving a class from a public base, class, public members of the base class become public members of the, derived, class, and, protected members, of, the, base, class, become protected members, of, the, derived, class., A, base, class's private members are never accessible directly from a derived, class,, but, can, be, accessed, through, calls, to, the public and protected members of the base class., , , , Protected, Inheritance: When, deriving, from, a protected base, class, public and, protected members, of, the, base, class, become protected members of the derived class., 192
Page 205 :
C++, , , , Private, Inheritance: When, deriving, from, class, public and, protected members, of, the, become private members of the derived class., , a private base, base, class, , Multiple Inheritance, A C++ class can inherit members from more than one class and here is the, extended syntax:, class derived-class: access baseA, access baseB...., Where access is one of public, protected, or private and would be given for, every base class and they will be separated by comma as shown above. Let us, try the following example:, #include <iostream>, , using namespace std;, , // Base class Shape, class Shape, {, public:, void setWidth(int w), {, width = w;, }, void setHeight(int h), {, height = h;, }, protected:, int width;, int height;, };, , // Base class PaintCost, class PaintCost, {, 193
Page 207 :
C++, , }, When the above code is compiled and executed, it produces the following result:, Total area: 35, Total paint cost: $2450, , 195
Page 208 :
C++, , 25. OVERLOADING (OPERATOR &, FUNCTION), C++ allows you to specify more than one definition for a function name or, an operator in, the, same, scope,, which, is, called function, overloading and operator overloading respectively., An overloaded declaration is a declaration that is declared with the same name, as a previously declared declaration in the same scope, except that both, declarations have different arguments and obviously different definition, (implementation)., When you call an overloaded function or operator, the compiler determines the, most appropriate definition to use, by comparing the argument types you have, used to call the function or operator with the parameter types specified in the, definitions. The process of selecting the most appropriate overloaded function or, operator is called overload resolution., Function Overloading in C++, You can have multiple definitions for the same function name in the same scope., The definition of the function must differ from each other by the types and/or, the number of arguments in the argument list. You cannot overload function, declarations that differ only by return type., Following is the example where same function print() is being used to print, different data types:, #include <iostream>, using namespace std;, , class printData, {, public:, void print(int i) {, cout << "Printing int: " << i << endl;, }, , void print(double, , f) {, , cout << "Printing float: " << f << endl;, }, , 196
Page 209 :
C++, , void print(char* c) {, cout << "Printing character: " << c << endl;, }, };, , int main(void), {, printData pd;, , // Call print to print integer, pd.print(5);, // Call print to print float, pd.print(500.263);, // Call print to print character, pd.print("Hello C++");, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Printing int: 5, Printing float: 500.263, Printing character: Hello C++, Operators Overloading in C++, You can redefine or overload most of the built-in operators available in C++., Thus, a programmer can use operators with user-defined types as well., Overloaded operators are functions with special names the keyword operator, followed by the symbol for the operator being defined. Like any other function,, an overloaded operator has a return type and a parameter list., Box operator+(const Box&);, Declares the addition operator that can be used to add two Box objects and, returns final Box object. Most overloaded operators may be defined as ordinary, non-member functions or as class member functions. In case we define above, function as non-member function of a class then we would have to pass two, arguments for each operand as follows:, 197
Page 210 :
C++, , Box operator+(const Box&, const Box&);, Following is the example to show the concept of operator over loading using a, member function. Here an object is passed as an argument whose properties will, be accessed using this object, the object which will call this operator can be, accessed using this operator as explained below:, #include <iostream>, using namespace std;, , class Box, {, public:, , double getVolume(void), {, return length * breadth * height;, }, void setLength( double len ), {, length = len;, }, , void setBreadth( double bre ), {, breadth = bre;, }, , void setHeight( double hei ), {, height = hei;, }, // Overload + operator to add two Box objects., Box operator+(const Box& b), {, Box box;, 198
Page 211 :
C++, , box.length = this->length + b.length;, box.breadth = this->breadth + b.breadth;, box.height = this->height + b.height;, return box;, }, private:, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , };, // Main function for the program, int main( ), {, Box Box1;, , // Declare Box1 of type Box, , Box Box2;, , // Declare Box2 of type Box, , Box Box3;, , // Declare Box3 of type Box, , double volume = 0.0;, , // Store the volume of a box here, , // box 1 specification, Box1.setLength(6.0);, Box1.setBreadth(7.0);, Box1.setHeight(5.0);, , // box 2 specification, Box2.setLength(12.0);, Box2.setBreadth(13.0);, Box2.setHeight(10.0);, , // volume of box 1, volume = Box1.getVolume();, cout << "Volume of Box1 : " << volume <<endl;, , // volume of box 2, volume = Box2.getVolume();, 199
Page 212 :
C++, , cout << "Volume of Box2 : " << volume <<endl;, , // Add two object as follows:, Box3 = Box1 + Box2;, , // volume of box 3, volume = Box3.getVolume();, cout << "Volume of Box3 : " << volume <<endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Volume of Box1 : 210, Volume of Box2 : 1560, Volume of Box3 : 5400, Overloadable/Non-overloadable Operators, Following is the list of operators which can be overloaded:, +, , -, , *, , /, , %, , ^, , &, , |, , ~, , !, , ,, , =, , <, , >, , <=, , >=, , ++, , --, , <<, , >>, , ==, , !=, , &&, , ||, , +=, , -=, , /=, , %=, , ^=, , &=, , |=, , *=, , <<=, , >>=, , [], , (), , ->, , ->*, , new, , new [], , delete, , delete [], , Following is the list of operators, which cannot be overloaded:, , 200
Page 213 :
C++, , ::, , .*, , ., , ?:, , Operator Overloading Examples, Here are various operator overloading examples to help you in understanding, the concept., S.N., , Operators and Example, , 1, , Unary operators overloading, , 2, , Binary operators overloading, , 3, , Relational operators overloading, , 4, , Input/Output operators overloading, , 5, , ++ and -- operators overloading, , 6, , Assignment operators overloading, , 7, , Function call () operator overloading, , 8, , Subscripting [] operator overloading, , 9, , Class member access operator -> overloading, , Unary Operators Overloading, The unary operators operate on a single operand and following are the examples, of Unary operators:, , , The increment (++) and decrement (--) operators., , , , The unary minus (-) operator., , , , The logical not (!) operator., , The unary operators operate on the object for which they were called and, normally, this operator appears on the left side of the object, as in !obj, -obj,, and ++obj but sometime they can be used as postfix as well like obj++ or obj--., Following example explain how minus (-) operator can be overloaded for prefix, as well as postfix usage., 201
Page 214 :
C++, , #include <iostream>, using namespace std;, , class Distance, {, private:, int feet;, , // 0 to infinite, , int inches;, , // 0 to 12, , public:, // required constructors, Distance(){, feet = 0;, inches = 0;, }, Distance(int f, int i){, feet = f;, inches = i;, }, // method to display distance, void displayDistance(), {, cout << "F: " << feet << " I:" << inches <<endl;, }, // overloaded minus (-) operator, Distance operator- (), {, feet = -feet;, inches = -inches;, return Distance(feet, inches);, }, };, int main(), {, Distance D1(11, 10), D2(-5, 11);, 202
Page 215 :
C++, , -D1;, , // apply negation, , D1.displayDistance();, , // display D1, , -D2;, , // apply negation, , D2.displayDistance();, , // display D2, , return 0;, }, When the above code is compiled and executed, it produces the following result:, F: -11 I:-10, F: 5 I:-11, Hope above example makes your concept clear and you can apply similar, concept to overload Logical Not Operators (!)., Increment (++) and Decrement (- -) Operators, The increment (++) and decrement (--) operators are two important unary, operators available in C++., Following example explain how increment (++) operator can be overloaded for, prefix as well as postfix usage. Similar way, you can overload operator (--)., #include <iostream>, using namespace std;, , class Time, {, private:, int hours;, , // 0 to 23, , int minutes;, , // 0 to 59, , public:, // required constructors, Time(){, hours = 0;, minutes = 0;, }, 203
Page 216 :
C++, , Time(int h, int m){, hours = h;, minutes = m;, }, // method to display time, void displayTime(), {, cout << "H: " << hours << " M:" << minutes <<endl;, }, // overloaded prefix ++ operator, Time operator++ (), {, ++minutes;, , // increment this object, , if(minutes >= 60), {, ++hours;, minutes -= 60;, }, return Time(hours, minutes);, }, // overloaded postfix ++ operator, Time operator++( int ), {, // save the orignal value, Time T(hours, minutes);, // increment this object, ++minutes;, if(minutes >= 60), {, ++hours;, minutes -= 60;, }, // return old original value, return T;, 204
Page 217 :
C++, , }, };, int main(), {, Time T1(11, 59), T2(10,40);, , ++T1;, , // increment T1, , T1.displayTime();, , // display T1, , ++T1;, , // increment T1 again, , T1.displayTime();, , // display T1, , T2++;, , // increment T2, , T2.displayTime();, , // display T2, , T2++;, , // increment T2 again, , T2.displayTime();, , // display T2, , return 0;, }, When the above code is compiled and executed, it produces the following result:, H: 12 M:0, H: 12 M:1, H: 10 M:41, H: 10 M:42, , Binary Operators Overloading, The unary operators take two arguments and following are the examples of, Binary operators. You use binary operators very frequently like addition (+), operator, subtraction (-) operator and division (/) operator., Following example explains how addition (+) operator can be overloaded., Similar way, you can overload subtraction (-) and division (/) operators., #include <iostream>, using namespace std;, 205
Page 218 :
C++, , class Box, {, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , public:, , double getVolume(void), {, return length * breadth * height;, }, void setLength( double len ), {, length = len;, }, , void setBreadth( double bre ), {, breadth = bre;, }, , void setHeight( double hei ), {, height = hei;, }, // Overload + operator to add two Box objects., Box operator+(const Box& b), {, Box box;, box.length = this->length + b.length;, box.breadth = this->breadth + b.breadth;, box.height = this->height + b.height;, return box;, 206
Page 220 :
C++, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Volume of Box1 : 210, Volume of Box2 : 1560, Volume of Box3 : 5400, Relational Operators Overloading, There are various relational operators supported by C++ language like (<, >,, <=, >=, ==, etc.) which can be used to compare C++ built-in data types., You can overload any of these operators, which can be used to compare the, objects of a class., Following example explains how a < operator can be overloaded and similar way, you can overload other relational operators., #include <iostream>, using namespace std;, , class Distance, {, private:, int feet;, , // 0 to infinite, , int inches;, , // 0 to 12, , public:, // required constructors, Distance(){, feet = 0;, inches = 0;, }, Distance(int f, int i){, feet = f;, inches = i;, }, // method to display distance, 208
Page 221 :
C++, , void displayDistance(), {, cout << "F: " << feet << " I:" << inches <<endl;, }, // overloaded minus (-) operator, Distance operator- (), {, feet = -feet;, inches = -inches;, return Distance(feet, inches);, }, // overloaded < operator, bool operator <(const Distance& d), {, if(feet < d.feet), {, return true;, }, if(feet == d.feet && inches < d.inches), {, return true;, }, return false;, }, };, int main(), {, Distance D1(11, 10), D2(5, 11);, , if( D1 < D2 ), {, cout << "D1 is less than D2 " << endl;, }, else, 209
Page 222 :
C++, , {, cout << "D2 is less than D1 " << endl;, }, return 0;, }, When the above code is compiled and executed, it produces the following result:, D2 is less than D1, Input/Output Operators Overloading, C++ is able to input and output the built-in data types using the stream, extraction operator >> and the stream insertion operator <<. The stream, insertion and stream extraction operators also can be overloaded to perform, input and output for user-defined types like an object., Here, it is important to make operator overloading function a friend of the class, because it would be called without creating an object., Following example explains how extraction operator >> and insertion operator, <<., #include <iostream>, using namespace std;, , class Distance, {, private:, int feet;, , // 0 to infinite, , int inches;, , // 0 to 12, , public:, // required constructors, Distance(){, feet = 0;, inches = 0;, }, Distance(int f, int i){, feet = f;, inches = i;, 210
Page 224 :
C++, , Second Distance :F : 5 I : 11, Third Distance :F : 70 I : 10, ++ and - - Operators Overloading, The increment (++) and decrement (--) operators are two important unary, operators available in C++., Following example explain how increment (++) operator can be overloaded for, prefix as well as postfix usage. Similar way, you can overload operator (--)., #include <iostream>, using namespace std;, , class Time, {, private:, int hours;, , // 0 to 23, , int minutes;, , // 0 to 59, , public:, // required constructors, Time(){, hours = 0;, minutes = 0;, }, Time(int h, int m){, hours = h;, minutes = m;, }, // method to display time, void displayTime(), {, cout << "H: " << hours << " M:" << minutes <<endl;, }, // overloaded prefix ++ operator, Time operator++ (), {, 212
Page 226 :
C++, , T2.displayTime();, , // display T2, , T2++;, , // increment T2 again, , T2.displayTime();, , // display T2, , return 0;, }, When the above code is compiled and executed, it produces the following result:, H: 12 M:0, H: 12 M:1, H: 10 M:41, H: 10 M:42, Assignment Operators Overloading, You can overload the assignment operator (=) just as you can other operators, and it can be used to create an object just like the copy constructor., Following example explains how an assignment operator can be overloaded., #include <iostream>, using namespace std;, , class Distance, {, private:, int feet;, , // 0 to infinite, , int inches;, , // 0 to 12, , public:, // required constructors, Distance(){, feet = 0;, inches = 0;, }, Distance(int f, int i){, feet = f;, inches = i;, }, 214
Page 227 :
C++, , void operator=(const Distance &D ), {, feet = D.feet;, inches = D.inches;, }, // method to display distance, void displayDistance(), {, cout << "F: " << feet <<, , " I:" <<, , inches << endl;, , }, , };, int main(), {, Distance D1(11, 10), D2(5, 11);, , cout << "First Distance : ";, D1.displayDistance();, cout << "Second Distance :";, D2.displayDistance();, , // use assignment operator, D1 = D2;, cout << "First Distance :";, D1.displayDistance();, , return 0;, }, When the above code is compiled and executed, it produces the following result:, First Distance : F: 11 I:10, Second Distance :F: 5 I:11, First Distance :F: 5 I:11, Function Call () Operator Overloading, 215
Page 228 :
C++, , The function call operator () can be overloaded for objects of class type. When, you overload ( ), you are not creating a new way to call a function. Rather, you, are creating an operator function that can be passed an arbitrary number of, parameters., Following example explains how a function call operator () can be overloaded., #include <iostream>, using namespace std;, , class Distance, {, private:, int feet;, , // 0 to infinite, , int inches;, , // 0 to 12, , public:, // required constructors, Distance(){, feet = 0;, inches = 0;, }, Distance(int f, int i){, feet = f;, inches = i;, }, // overload function call, Distance operator()(int a, int b, int c), {, Distance D;, // just put random calculation, D.feet = a + c + 10;, D.inches = b + c + 100 ;, return D;, }, // method to display distance, void displayDistance(), {, , 216
Page 229 :
C++, , cout << "F: " << feet <<, , " I:" <<, , inches << endl;, , }, , };, int main(), {, Distance D1(11, 10), D2;, , cout << "First Distance : ";, D1.displayDistance();, , D2 = D1(10, 10, 10); // invoke operator(), cout << "Second Distance :";, D2.displayDistance();, , return 0;, }, , When the above code is compiled and executed, it produces the following result:, First Distance : F: 11 I:10, Second Distance :F: 30 I:120, Subscripting [ ] Operator Overloading, The subscript operator [] is normally used to access array elements. This, operator can be overloaded to enhance the existing functionality of C++ arrays., Following example explains how a subscript operator [] can be overloaded., #include <iostream>, using namespace std;, const int SIZE = 10;, , class safearay, {, private:, 217
Page 230 :
C++, , int arr[SIZE];, public:, safearay(), {, register int i;, for(i = 0; i < SIZE; i++), {, arr[i] = i;, }, }, int &operator[](int i), {, if( i > SIZE ), {, cout << "Index out of bounds" <<endl;, // return first element., return arr[0];, }, return arr[i];, }, };, int main(), {, safearay A;, , cout << "Value of A[2] : " << A[2] <<endl;, cout << "Value of A[5] : " << A[5]<<endl;, cout << "Value of A[12] : " << A[12]<<endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Value of A[2] : 2, 218
Page 231 :
C++, , Value of A[5] : 5, Index out of bounds, Value of A[12] : 0, Class Member Access Operator - > Overloading, The class member access operator (->) can be overloaded but it is bit trickier. It, is defined to give a class type a "pointer-like" behavior. The operator -> must be, a member function. If used, its return type must be a pointer or an object of a, class to which you can apply., The operator-> is used often in conjunction with the pointer-dereference, operator * to implement "smart pointers." These pointers are objects that, behave like normal pointers except they perform other tasks when you access, an object through them, such as automatic object deletion either when the, pointer is destroyed, or the pointer is used to point to another object., The dereferencing operator-> can be defined as a unary postfix operator. That, is, given a class:, class Ptr{, //..., X * operator->();, };, Objects of class Ptr can be used to access members of class X in a very similar, manner to the way pointers are used. For example:, void f(Ptr p ), {, p->m = 10 ; // (p.operator->())->m = 10, }, The statement p->m is interpreted as (p.operator->())->m. Using the same, concept, following example explains how a class access operator -> can be, overloaded., #include <iostream>, #include <vector>, using namespace std;, , // Consider an actual class., class Obj {, 219
Page 232 :
C++, , static int i, j;, public:, void f() const { cout << i++ << endl; }, void g() const { cout << j++ << endl; }, };, , // Static member definitions:, int Obj::i = 10;, int Obj::j = 12;, , // Implement a container for the above class, class ObjContainer {, vector<Obj*> a;, public:, void add(Obj* obj), {, a.push_back(obj);, , // call vector's standard method., , }, friend class SmartPointer;, };, , // implement smart pointer to access member of Obj class., class SmartPointer {, ObjContainer oc;, int index;, public:, SmartPointer(ObjContainer& objc), {, oc = objc;, index = 0;, }, // Return value indicates end of list:, bool operator++() // Prefix version, {, 220
Page 234 :
C++, , }, When the above code is compiled and executed, it produces the following result:, 10, 12, 11, 13, 12, 14, 13, 15, 14, 16, 15, 17, 16, 18, 17, 19, 18, 20, 19, 21, , 222
Page 235 :
26. POLYMORPHISM, , C++, , The word polymorphism means having many forms. Typically, polymorphism, occurs when there is a hierarchy of classes and they are related by inheritance., C++ polymorphism means that a call to a member function will cause a different, function to be executed depending on the type of object that invokes the, function., Consider the following example where a base class has been derived by other, two classes:, #include <iostream>, using namespace std;, , class Shape {, protected:, int width, height;, public:, Shape( int a=0, int b=0), {, width = a;, height = b;, }, int area(), {, cout << "Parent class area :" <<endl;, return 0;, }, };, class Rectangle: public Shape{, public:, Rectangle( int a=0, int b=0):Shape(a, b) { }, int area (), {, cout << "Rectangle class area :" <<endl;, 223
Page 236 :
C++, , return (width * height);, }, };, class Triangle: public Shape{, public:, Triangle( int a=0, int b=0):Shape(a, b) { }, int area (), {, cout << "Triangle class area :" <<endl;, return (width * height / 2);, }, };, // Main function for the program, int main( ), {, Shape *shape;, Rectangle rec(10,7);, Triangle, , tri(10,5);, , // store the address of Rectangle, shape = &rec;, // call rectangle area., shape->area();, , // store the address of Triangle, shape = &tri;, // call triangle area., shape->area();, , return 0;, }, , 224
Page 237 :
C++, , When the above code is compiled and executed, it produces the following result:, Parent class area, Parent class area, The reason for the incorrect output is that the call of the function area() is being, set once by the compiler as the version defined in the base class. This is, called static resolution of the function call, or static linkage - the function call, is fixed before the program is executed. This is also sometimes called early, binding because the area() function is set during the compilation of the, program., But now, let's make a slight modification in our program and precede the, declaration of area() in the Shape class with the keyword virtual so that it looks, like this:, class Shape {, protected:, int width, height;, public:, Shape( int a=0, int b=0), {, width = a;, height = b;, }, virtual int area(), {, cout << "Parent class area :" <<endl;, return 0;, }, };, After this slight modification, when the previous example code is compiled and, executed, it produces the following result:, Rectangle class area, Triangle class area, This time, the compiler looks at the contents of the pointer instead of its type., Hence, since addresses of objects of tri and rec classes are stored in *shape the, respective area() function is called., 225
Page 238 :
C++, , As you can see, each of the child classes has a separate implementation for the, function area(). This is how polymorphism is generally used. You have different, classes with a function of the same name, and even the same parameters, but, with different implementations., Virtual Function, A virtual function is a function in a base class that is declared using the, keyword virtual. Defining in a base class a virtual function, with another version, in a derived class, signals to the compiler that we don't want static linkage for, this function., What we do want is the selection of the function to be called at any given point, in the program to be based on the kind of object for which it is called. This sort, of operation is referred to as dynamic linkage, or late binding., Pure Virtual Functions, It is possible that you want to include a virtual function in a base class so that it, may be redefined in a derived class to suit the objects of that class, but that, there is no meaningful definition you could give for the function in the base, class., We can change the virtual function area() in the base class to the following:, class Shape {, protected:, int width, height;, public:, Shape( int a=0, int b=0), {, width = a;, height = b;, }, // pure virtual function, virtual int area() = 0;, };, The = 0 tells the compiler that the function has no body and above virtual, function will be called pure virtual function., , 226
Page 239 :
27. DATA ABSTRACTION, , C++, , Data abstraction refers to providing only essential information to the outside, world and hiding their background details, i.e., to represent the needed, information in program without presenting the details., Data abstraction is a programming (and design) technique that relies on the, separation of interface and implementation., Let's take one real life example of a TV, which you can turn on and off, change, the channel, adjust the volume, and add external components such as speakers,, VCRs, and DVD players, BUT you do not know its internal details, that is, you do, not know how it receives signals over the air or through a cable, how it, translates them, and finally displays them on the screen., Thus, we can say a television clearly separates its internal implementation from, its external interface and you can play with its interfaces like the power button,, channel changer, and volume control without having zero knowledge of its, internals., In C++, classes provides great level of data abstraction. They provide, sufficient public methods to the outside world to play with the functionality of, the object and to manipulate object data, i.e., state without actually knowing, how class has been implemented internally., For example, your program can make a call to the sort() function without, knowing what algorithm the function actually uses to sort the given values. In, fact, the underlying implementation of the sorting functionality could change, between releases of the library, and as long as the interface stays the same,, your function call will still work., In C++, we use classes to define our own abstract data types (ADT). You can, use the cout object of class ostream to stream data to standard output like, this:, #include <iostream>, using namespace std;, , int main( ), {, cout << "Hello C++" <<endl;, return 0;, }, 227
Page 240 :
C++, , Here, you don't need to understand how cout displays the text on the user's, screen. You need to only know the public interface and the underlying, implementation of ‘cout’ is free to change., Access Labels Enforce Abstraction, In C++, we use access labels to define the abstract interface to the class. A, class may contain zero or more access labels:, , , Members defined with a public label are accessible to all parts of the, program. The data-abstraction view of a type is defined by its public, members., , , , Members defined with a private label are not accessible to code that uses, the class. The private sections hide the implementation from code that, uses the type., , There are no restrictions on how often an access label may appear. Each access, label specifies the access level of the succeeding member definitions. The, specified access level remains in effect until the next access label is encountered, or the closing right brace of the class body is seen., Benefits of Data Abstraction, Data abstraction provides two important advantages:, , , Class internals are protected from inadvertent user-level errors, which, might corrupt the state of the object., , , , The class implementation may evolve over time in response to changing, requirements or bug reports without requiring change in user-level code., , By defining data members only in the private section of the class, the class, author is free to make changes in the data. If the implementation changes, only, the class code needs to be examined to see what affect the change may have. If, data is public, then any function that directly access the data members of the, old representation might be broken., Data Abstraction Example, Any C++ program where you implement a class with public and private, members is an example of data abstraction. Consider the following example:, #include <iostream>, using namespace std;, , class Adder{, public:, // constructor, Adder(int i = 0), 228
Page 241 :
C++, , {, total = i;, }, // interface to outside world, void addNum(int number), {, total += number;, }, // interface to outside world, int getTotal(), {, return total;, };, private:, // hidden data from outside world, int total;, };, int main( ), {, Adder a;, , a.addNum(10);, a.addNum(20);, a.addNum(30);, , cout << "Total " << a.getTotal() <<endl;, return 0;, }, When the above code is compiled and executed, it produces the following result:, Total 60, Above class adds numbers together, and returns the sum. The public members addNum and getTotal are the interfaces to the outside world and a user needs, to know them to use the class. The private member total is something that the, user doesn't need to know about, but is needed for the class to operate properly., 229
Page 242 :
C++, , Designing Strategy, Abstraction separates code into interface and implementation. So while, designing your component, you must keep interface independent of the, implementation so that if you change underlying implementation then interface, would remain intact., In this case whatever programs are using these interfaces, they would not be, impacted and would just need a recompilation with the latest implementation., , 230
Page 243 :
28. DATA ENCAPSULATION, , C++, , All C++ programs are composed of the following two fundamental elements:, , , Program statements (code): This is the part of a program that, performs actions and they are called functions., , , , Program data: The data is the information of the program which gets, affected by the program functions., , Encapsulation is an Object Oriented Programming concept that binds together, the data and functions that manipulate the data, and that keeps both safe from, outside interference and misuse. Data encapsulation led to the important OOP, concept of data hiding., Data encapsulation is a mechanism of bundling the data, and the functions, that use them and data abstraction is a mechanism of exposing only the, interfaces and hiding the implementation details from the user., C++ supports the properties of encapsulation and data hiding through the, creation of user-defined types, called classes. We already have studied that a, class can contain private, protected and public members. By default, all items, defined in a class are private. For example:, class Box, {, public:, double getVolume(void), {, return length * breadth * height;, }, private:, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , };, The variables length, breadth, and height are private. This means that they can, be accessed only by other members of the Box class, and not by any other part, of your program. This is one way encapsulation is achieved., To make parts of a class public (i.e., accessible to other parts of your program),, you must declare them after the public keyword. All variables or functions, 231
Page 244 :
C++, , defined after the public specifier are accessible by all other functions in your, program., Making one class a friend of another, exposes the implementation details and, reduces encapsulation. The ideal is to keep as many of the details of each class, hidden from all other classes as possible., Data Encapsulation Example, Any C++ program where you implement a class with public and private, members is an example of data encapsulation and data abstraction. Consider the, following example:, #include <iostream>, using namespace std;, , class Adder{, public:, // constructor, Adder(int i = 0), {, total = i;, }, // interface to outside world, void addNum(int number), {, total += number;, }, // interface to outside world, int getTotal(), {, return total;, };, private:, // hidden data from outside world, int total;, };, int main( ), {, 232
Page 245 :
C++, , Adder a;, , a.addNum(10);, a.addNum(20);, a.addNum(30);, , cout << "Total " << a.getTotal() <<endl;, return 0;, }, When the above code is compiled and executed, it produces the following result:, Total 60, Above class adds numbers together, and returns the sum. The public members addNum and getTotal are the interfaces to the outside world and a user needs, to know them to use the class. The private member total is something that is, hidden from the outside world, but is needed for the class to operate properly., Designing Strategy, Most of us have learnt to make class members private by default unless we, really need to expose them. That's just good encapsulation., This is applied most frequently to data members, but it applies equally to all, members, including virtual functions., , 233
Page 246 :
29. INTERFACES, , C++, , An interface describes the behavior or capabilities of a C++ class without, committing to a particular implementation of that class., The C++ interfaces are implemented using abstract classes and these abstract, classes should not be confused with data abstraction which is a concept of, keeping implementation details separate from associated data., A class is made abstract by declaring at least one of its functions as pure, virtual function. A pure virtual function is specified by placing "= 0" in its, declaration as follows:, class Box, {, public:, // pure virtual function, virtual double getVolume() = 0;, private:, double length;, , // Length of a box, , double breadth;, , // Breadth of a box, , double height;, , // Height of a box, , };, The purpose of an abstract class (often referred to as an ABC) is to provide an, appropriate base class from which other classes can inherit. Abstract classes, cannot be used to instantiate objects and serves only as an interface., Attempting to instantiate an object of an abstract class causes a compilation, error., Thus, if a subclass of an ABC needs to be instantiated, it has to implement each, of the virtual functions, which means that it supports the interface declared by, the ABC. Failure to override a pure virtual function in a derived class, then, attempting to instantiate objects of that class, is a compilation error., Classes that can be used to instantiate objects are called concrete classes., Abstract Class Example, Consider the following example where parent class provides an interface to the, base class to implement a function called getArea():, #include <iostream>, 234
Page 247 :
C++, , using namespace std;, , // Base class, class Shape, {, public:, // pure virtual function providing interface framework., virtual int getArea() = 0;, void setWidth(int w), {, width = w;, }, void setHeight(int h), {, height = h;, }, protected:, int width;, int height;, };, , // Derived classes, class Rectangle: public Shape, {, public:, int getArea(), {, return (width * height);, }, };, class Triangle: public Shape, {, public:, 235
Page 248 :
C++, , int getArea(), {, return (width * height)/2;, }, };, , int main(void), {, Rectangle Rect;, Triangle, , Tri;, , Rect.setWidth(5);, Rect.setHeight(7);, // Print the area of the object., cout << "Total Rectangle area: " << Rect.getArea() << endl;, , Tri.setWidth(5);, Tri.setHeight(7);, // Print the area of the object., cout << "Total Triangle area: " << Tri.getArea() << endl;, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Total Rectangle area: 35, Total Triangle area: 17, You can see how an abstract class defined an interface in terms of getArea() and, two other classes implemented same function but with different algorithm to, calculate the area specific to the shape., Designing Strategy, An object-oriented system might use an abstract base class to provide a, common and standardized interface appropriate for all the external applications., Then, through inheritance from that abstract base class, derived classes are, formed that operate similarly., 236
Page 249 :
C++, , The capabilities (i.e., the public functions) offered by the external applications, are provided as pure virtual functions in the abstract base class. The, implementations of these pure virtual functions are provided in the derived, classes that correspond to the specific types of the application., This architecture also allows new applications to be added to a system easily,, even after the system has been defined., , 237
Page 250 :
30. FILES AND STREAMS, , C++, , So far, we have been using the iostream standard library, which, provides cin and cout methods for reading from standard input and writing to, standard output respectively., This tutorial will teach you how to read and write from a file. This requires, another standard C++ library called fstream, which defines three new data, types:, Data Type, , Description, , ofstream, , This data type represents the output file stream and is, used to create files and to write information to files., , ifstream, , This data type represents the input file stream and is, used to read information from files., , fstream, , This data type represents the file stream generally,, and has the capabilities of both ofstream and ifstream, which means it can create files, write information to, files, and read information from files., , To perform file processing in C++, header files <iostream> and <fstream> must, be included in your C++ source file., Opening a File, A file must be opened before you can read from it or write to it. Either, ofstream or fstream object may be used to open a file for writing. And ifstream, object is used to open a file for reading purpose only., Following is the standard syntax for open() function, which is a member of, fstream, ifstream, and ofstream objects., void open(const char *filename, ios::openmode mode);, Here, the first argument specifies the name and location of the file to be opened, and the second argument of the open() member function defines the mode in, which the file should be opened., Mode Flag, , Description, 238
Page 251 :
C++, , ios::app, , Append mode. All output to that file to be appended to, the end., , ios::ate, , Open a file for output and move the read/write control, to the end of the file., , ios::in, , Open a file for reading., , ios::out, , Open a file for writing., , ios::trunc, , If the file already exists, its contents will be truncated, before opening the file., , You can combine two or more of these values by ORing them together. For, example if you want to open a file in write mode and want to truncate it in case, that already exists, following will be the syntax:, ofstream outfile;, outfile.open("file.dat", ios::out | ios::trunc );, Similar way, you can open a file for reading and writing purpose as follows:, fstream, , afile;, , afile.open("file.dat", ios::out | ios::in );, Closing a File, When a C++ program terminates it automatically flushes all the streams,, release all the allocated memory and close all the opened files. But it is always a, good practice that a programmer should close all the opened files before, program termination., Following is the standard syntax for close() function, which is a member of, fstream, ifstream, and ofstream objects., void close();, Writing to a File, While doing C++ programming, you write information to a file from your, program using the stream insertion operator (<<) just as you use that operator, to output information to the screen. The only difference is that you use, an ofstream or fstream object instead of the cout object., Reading from a File, 239
Page 252 :
C++, , You read information from a file into your program using the stream extraction, operator (>>) just as you use that operator to input information from the, keyboard. The only difference is that you use an ifstream or fstream object, instead of the cin object., Read & Write Example, Following is the C++ program which opens a file in reading and writing mode., After writing information entered by the user to a file named afile.dat, the, program reads information from the file and outputs it onto the screen:, #include <fstream>, #include <iostream>, using namespace std;, , int main (), {, , char data[100];, , // open a file in write mode., ofstream outfile;, outfile.open("afile.dat");, , cout << "Writing to the file" << endl;, cout << "Enter your name: ";, cin.getline(data, 100);, , // write inputted data into the file., outfile << data << endl;, , cout << "Enter your age: ";, cin >> data;, cin.ignore();, , // again write inputted data into the file., outfile << data << endl;, , 240
Page 253 :
C++, , // close the opened file., outfile.close();, , // open a file in read mode., ifstream infile;, infile.open("afile.dat");, , cout << "Reading from the file" << endl;, infile >> data;, , // write the data at the screen., cout << data << endl;, , // again read the data from the file and display it., infile >> data;, cout << data << endl;, , // close the opened file., infile.close();, , return 0;, }, When the above code is compiled and executed, it produces the following, sample input and output:, $./a.out, Writing to the file, Enter your name: Zara, Enter your age: 9, Reading from the file, Zara, 9, Above examples make use of additional functions from cin object, like getline(), function to read the line from outside, and ignore() function to ignore the extra, characters left by previous read statement., 241
Page 254 :
C++, , File Position Pointers, Both istream and ostream provide member functions for repositioning the fileposition pointer. These member functions are seekg ("seek get") for istream, and seekp ("seek put") for ostream., The argument to seekg and seekp normally is a long integer. A second argument, can be specified to indicate the seek direction. The seek direction can, be ios::beg (the default) for positioning relative to the beginning of a, stream, ios::cur for positioning relative to the current position in a stream, or ios::end for positioning relative to the end of a stream., The file-position pointer is an integer value that specifies the location in the file, as a number of bytes from the file's starting location. Some examples of, positioning the "get" file-position pointer are:, // position to the nth byte of fileObject (assumes ios::beg), fileObject.seekg( n );, , // position n bytes forward in fileObject, fileObject.seekg( n, ios::cur );, , // position n bytes back from end of fileObject, fileObject.seekg( n, ios::end );, , // position at end of fileObject, fileObject.seekg( 0, ios::end );, , 242
Page 255 :
31. EXCEPTION HANDLING, , C++, , An exception is a problem that arises during the execution of a program. A C++, exception is a response to an exceptional circumstance that arises while a, program is running, such as an attempt to divide by zero., Exceptions provide a way to transfer control from one part of a program to, another. C++ exception handling is built upon three keywords: try,, catch, and throw., , , throw: A program throws an exception when a problem shows up. This is, done using a throw keyword., , , , catch: A program catches an exception with an exception handler at the, place in a program where you want to handle the problem., The catch keyword indicates the catching of an exception., , , , try: A try block identifies a block of code for which particular exceptions, will be activated. It is followed by one or more catch blocks., , Assuming a block will raise an exception, a method catches an exception using a, combination of the try and catch keywords. A try/catch block is placed around, the code that might generate an exception. Code within a try/catch block is, referred to as protected code, and the syntax for using try/catch is as follows:, try, {, // protected code, }catch( ExceptionName e1 ), {, // catch block, }catch( ExceptionName e2 ), {, // catch block, }catch( ExceptionName eN ), {, // catch block, }, You can list down multiple catch statements to catch different type of exceptions, in case your try block raises more than one exception in different situations., 243
Page 256 :
C++, , Throwing Exceptions, Exceptions can be thrown anywhere within a code block using throw statement., The operand of the throw statement determines a type for the exception and can, be any expression and the type of the result of the expression determines the, type of exception thrown., Following is an example of throwing an exception when dividing by zero, condition occurs:, double division(int a, int b), {, if( b == 0 ), {, throw "Division by zero condition!";, }, return (a/b);, }, Catching Exceptions, The catch block following the try block catches any exception. You can specify, what type of exception you want to catch and this is determined by the, exception declaration that appears in parentheses following the keyword catch., try, {, // protected code, }catch( ExceptionName e ), {, // code to handle ExceptionName exception, }, Above code will catch an exception of ExceptionName type. If you want to, specify that a catch block should handle any type of exception that is thrown in a, try block, you must put an ellipsis, ..., between the parentheses enclosing the, exception declaration as follows:, try, {, // protected code, }catch(...), 244
Page 257 :
C++, , {, // code to handle any exception, }, The following is an example, which throws a division by zero exception and we, catch it in catch block., #include <iostream>, using namespace std;, , double division(int a, int b), {, if( b == 0 ), {, throw "Division by zero condition!";, }, return (a/b);, }, , int main (), {, int x = 50;, int y = 0;, double z = 0;, , try {, z = division(x, y);, cout << z << endl;, }catch (const char* msg) {, cerr << msg << endl;, }, , return 0;, }, , 245
Page 258 :
C++, , Because we are raising an exception of type const char*, so while catching this, exception, we have to use const char* in catch block. If we compile and run, above code, this would produce the following result:, Division by zero condition!, C++ Standard Exceptions, C++ provides a list of standard exceptions defined in <exception> which we, can use in our programs. These are arranged in a parent-child class hierarchy, shown below:, , Here is the small description of each exception mentioned in the above, hierarchy:, Exception, , Description, , std::exception, , An exception and parent class of all the standard C++, exceptions., , 246
Page 259 :
C++, , std::bad_alloc, , This can be thrown by new., , std::bad_cast, , This can be thrown by dynamic_cast., , std::bad_exception, , This is useful device to handle unexpected exceptions, in a C++ program., , std::bad_typeid, , This can be thrown by typeid., , std::logic_error, , An exception that theoretically can be detected by, reading the code., , std::domain_error, , This is an exception thrown when a mathematically, invalid domain is used., , std::invalid_argument, , This is thrown due to invalid arguments., , std::length_error, , This is thrown when a too big std::string is created., , std::out_of_range, , This can be thrown by the ‘at’ method, for example a, std::vector and std::bitset<>::operator[]()., , std::runtime_error, , An exception that theoretically cannot be detected by, reading the code., , std::overflow_error, , This is thrown if a mathematical overflow occurs., , std::range_error, , This is occurred when you try to store a value which is, out of range., , std::underflow_error, , This is thrown if a mathematical underflow occurs., , Define New Exceptions, You can define your own exceptions by inheriting and overriding exception class, functionality. Following is the example, which shows how you can use, std::exception class to implement your own exception in standard way:, #include <iostream>, #include <exception>, using namespace std;, 247
Page 260 :
C++, , struct MyException : public exception, {, const char * what () const throw (), {, return "C++ Exception";, }, };, , int main(), {, try, {, throw MyException();, }, catch(MyException& e), {, std::cout << "MyException caught" << std::endl;, std::cout << e.what() << std::endl;, }, catch(std::exception& e), {, //Other errors, }, }, This would produce the following result:, MyException caught, C++ Exception, Here, what() is a public method provided by exception class and it has been, overridden by all the child exception classes. This returns the cause of an, exception., , 248
Page 261 :
32. DYNAMIC MEMORY, , C++, , A good understanding of how dynamic memory really works in C++ is essential, to becoming a good C++ programmer. Memory in your C++ program is divided, into two parts:, , , The stack: All variables declared inside the function will take up memory, from the stack., , , , The heap: This is unused memory of the program and can be used to, allocate the memory dynamically when program runs., , Many times, you are not aware in advance how much memory you will need to, store particular information in a defined variable and the size of required, memory can be determined at run time., You can allocate memory at run time within the heap for the variable of a given, type using a special operator in C++ which returns the address of the space, allocated. This operator is called new operator., If you are not in need of dynamically allocated memory anymore, you can use, delete operator, which de-allocates memory previously allocated by new, operator., The new and delete Operators, There is following generic syntax to use new operator to allocate memory, dynamically for any data-type., new data-type;, Here, data-type could be any built-in data type including an array or any user, defined data types include class or structure. Let us start with built-in data, types. For example we can define a pointer to type double and then request that, the memory be allocated at execution time. We can do this using the new, operator with the following statements:, double* pvalue, pvalue, , = NULL; // Pointer initialized with null, , = new double;, , // Request memory for the variable, , The memory may not have been allocated successfully, if the free store had, been used up. So it is good practice to check if new operator is returning NULL, pointer and take appropriate action as below:, , 249
Page 262 :
C++, , double* pvalue, if( !(pvalue, , = NULL;, , = new double )), , {, cout << "Error: out of memory." <<endl;, exit(1);, , }, The malloc() function from C, still exists in C++, but it is recommended to, avoid using malloc() function. The main advantage of new over malloc() is that, new doesn't just allocate memory, it constructs objects which is prime purpose, of C++., At any point, when you feel a variable that has been dynamically allocated is not, anymore required, you can free up the memory that it occupies in the free store, with the delete operator as follows:, delete pvalue;, , // Release memory pointed to by pvalue, , Let us put above concepts and form the following example to show how new and, delete work:, #include <iostream>, using namespace std;, , int main (), {, double* pvalue, pvalue, , = NULL; // Pointer initialized with null, , = new double;, , *pvalue = 29494.99;, , // Request memory for the variable, , // Store value at allocated address, , cout << "Value of pvalue : " << *pvalue << endl;, , delete pvalue;, , // free up the memory., , return 0;, }, If we compile and run above code, this would produce the following result:, 250
Page 263 :
C++, , Value of pvalue : 29495, Dynamic Memory Allocation for Arrays, Consider you want to allocate memory for an array of characters, i.e., string of, 20 characters. Using the same syntax what we have used above we can allocate, memory dynamically as shown below., char* pvalue, pvalue, , = NULL;, , // Pointer initialized with null, , = new char[20]; // Request memory for the variable, , To remove the array that we have just created the statement would look like, this:, delete [] pvalue;, , // Delete array pointed to by pvalue, , Following is the syntax of new operator for a multi-dimensional array as follows:, int ROW = 2;, int COL = 3;, double **pvalue, , = new double* [ROW]; // Allocate memory for rows, , // Now allocate memory for columns, for(int i = 0; i < COL; i++) {, pvalue[i] = new double[COL];, }, The syntax to release the memory for multi-dimensional will be as follows:, for(int i = 0; i < COL; i++) {, delete[] pvalue[i];, }, delete [] pvalue;, Dynamic Memory Allocation for Objects, Objects are no different from simple data types. For example, consider the, following code where we are going to use an array of objects to clarify the, concept:, #include <iostream>, using namespace std;, , 251
Page 264 :
C++, , class Box, {, public:, Box() {, cout << "Constructor called!" <<endl;, }, ~Box() {, cout << "Destructor called!" <<endl;, }, };, , int main( ), {, Box* myBoxArray = new Box[4];, , delete [] myBoxArray; // Delete array, , return 0;, }, If you were to allocate an array of four Box objects, the Simple constructor, would be called four times and similarly while deleting these objects, destructor, will also be called same number of times., If we compile and run above code, this would produce the following result:, Constructor called!, Constructor called!, Constructor called!, Constructor called!, Destructor called!, Destructor called!, Destructor called!, Destructor called!, , 252
Page 265 :
33. NAMESPACES, , C++, , Consider a situation, when we have two persons with the same name, Zara, in, the same class. Whenever we need to differentiate them definitely we would, have to use some additional information along with their name, like either the, area, if they live in different area or their mother’s or father’s name, etc., Same situation can arise in your C++ applications. For example, you might be, writing some code that has a function called xyz() and there is another library, available which is also having same function xyz(). Now the compiler has no way, of knowing which version of xyz() function you are referring to within your code., A namespace is designed to overcome this difficulty and is used as additional, information to differentiate similar functions, classes, variables etc. with the, same name available in different libraries. Using namespace, you can define the, context in which names are defined. In essence, a namespace defines a scope., Defining a Namespace, A namespace definition begins with the keyword namespace followed by the, namespace name as follows:, namespace namespace_name {, // code declarations, }, To call the namespace-enabled version of either function or variable, prepend, (::) the namespace name as follows:, name::code;, , // code could be variable or function., , Let us see how namespace scope the entities including variable and functions:, #include <iostream>, using namespace std;, , // first name space, namespace first_space{, void func(){, cout << "Inside first_space" << endl;, }, }, 253
Page 267 :
C++, , }, // second name space, namespace second_space{, void func(){, cout << "Inside second_space" << endl;, }, }, using namespace first_space;, int main (), {, , // This calls function from first name space., func();, , return 0;, }, If we compile and run above code, this would produce the following result:, Inside first_space, The ‘using’ directive can also be used to refer to a particular item within a, namespace. For example, if the only part of the std namespace that you intend, to use is cout, you can refer to it as follows:, using std::cout;, Subsequent code can refer to cout without prepending the namespace, but other, items in the std namespace will still need to be explicit as follows:, #include <iostream>, using std::cout;, , int main (), {, , cout << "std::endl is used with std!" << std::endl;, , 255
Page 268 :
C++, , return 0;, }, If we compile and run above code, this would produce the following result:, std::endl is used with std!, Names introduced in a using directive obey normal scope rules. The name is, visible from the point of the using directive to the end of the scope in which the, directive is found. Entities with the same name defined in an outer scope are, hidden., Discontiguous Namespaces, A namespace can be defined in several parts and so a namespace is made up of, the sum of its separately defined parts. The separate parts of a namespace can, be spread over multiple files., So, if one part of the namespace requires a name defined in another file, that, name must still be declared. Writing a following namespace definition either, defines a new namespace or adds new elements to an existing one:, namespace namespace_name {, // code declarations, }, Nested Namespaces, Namespaces can be nested where you can define one namespace inside another, namespace as follows:, namespace namespace_name1 {, // code declarations, namespace namespace_name2 {, // code declarations, }, }, , You can access members of nested namespace by using resolution operators as, follows:, // to access members of namespace_name2, using namespace namespace_name1::namespace_name2;, 256
Page 270 :
34. TEMPLATES, , C++, , Templates are the foundation of generic programming, which involves writing, code in a way that is independent of any particular type., A template is a blueprint or formula for creating a generic class or a function., The library containers like iterators and algorithms are examples of generic, programming and have been developed using template concept., There is a single definition of each container, such as vector, but we can define, many different kinds of vectors for example, vector <int> or vector <string>., You can use templates to define functions as well as classes, let us see how, they work:, Function Template, The general form of a template function definition is shown here:, template <class type> ret-type func-name(parameter list), {, // body of function, }, Here, type is a placeholder name for a data type used by the function. This, name can be used within the function definition., The following is the example of a function template that returns the maximum of, two values:, #include <iostream>, #include <string>, , using namespace std;, , template <typename T>, inline T const& Max (T const& a, T const& b), {, return a < b ? b:a;, }, int main (), {, 258
Page 271 :
C++, , int i = 39;, int j = 20;, cout << "Max(i, j): " << Max(i, j) << endl;, , double f1 = 13.5;, double f2 = 20.7;, cout << "Max(f1, f2): " << Max(f1, f2) << endl;, , string s1 = "Hello";, string s2 = "World";, cout << "Max(s1, s2): " << Max(s1, s2) << endl;, , return 0;, }, If we compile and run above code, this would produce the following result:, Max(i, j): 39, Max(f1, f2): 20.7, Max(s1, s2): World, Class Template, Just as we can define function templates, we can also define class templates., The general form of a generic class declaration is shown here:, template <class type> class class-name {, ., ., ., }, Here, type is the placeholder type name, which will be specified when a class is, instantiated. You can define more than one generic data type by using a commaseparated list., Following is the example to define class Stack<> and implement generic, methods to push and pop the elements from the stack:, 259
Page 272 :
C++, , #include <iostream>, #include <vector>, #include <cstdlib>, #include <string>, #include <stdexcept>, , using namespace std;, , template <class T>, class Stack {, private:, vector<T> elems;, , // elements, , public:, void push(T const&);, , // push element, , void pop();, , // pop element, , T top() const;, , // return top element, , bool empty() const{, , // return true if empty., , return elems.empty();, }, };, , template <class T>, void Stack<T>::push (T const& elem), {, // append copy of passed element, elems.push_back(elem);, }, , template <class T>, void Stack<T>::pop (), {, if (elems.empty()) {, throw out_of_range("Stack<>::pop(): empty stack");, 260
Page 274 :
C++, , }, }, If we compile and run above code, this would produce the following result:, 7, hello, Exception: Stack<>::pop(): empty stack, , 262
Page 275 :
35. PREPROCESSOR, , C++, , The preprocessors are the directives, which give instructions to the compiler to, preprocess the information before actual compilation starts., All preprocessor directives begin with #, and only white-space characters may, appear before a preprocessor directive on a line. Preprocessor directives are not, C++ statements, so they do not end in a semicolon (;)., You already have seen a #include directive in all the examples. This macro is, used to include a header file into the source file., There are number of preprocessor directives supported by C++ like #include,, #define, #if, #else, #line, etc. Let us see important directives:, The #define Preprocessor, The #define preprocessor directive creates symbolic constants. The symbolic, constant is called a macro and the general form of the directive is:, #define macro-name replacement-text, When this line appears in a file, all subsequent occurrences of macro in that file, will be replaced by replacement-text before the program is compiled. For, example:, #include <iostream>, using namespace std;, , #define PI 3.14159, , int main (), {, , cout << "Value of PI :" << PI << endl;, , return 0;, }, Now, let us do the preprocessing of this code to see the result assuming we have, the source code file. So let us compile it with -E option and redirect the result to, , 263
Page 276 :
C++, , test.p. Now, if you check test.p, it will have lots of information and at the, bottom, you will find the value replaced as follows:, $gcc -E test.cpp > test.p, , ..., int main (), {, , cout << "Value of PI :" << 3.14159 << endl;, , return 0;, }, Function-Like Macros, You can use #define to define a macro which will take argument as follows:, #include <iostream>, using namespace std;, , #define MIN(a,b) (((a)<(b)) ? a : b), , int main (), {, int i, j;, i = 100;, j = 30;, cout <<"The minimum is " << MIN(i, j) << endl;, , return 0;, }, If we compile and run above code, this would produce the following result:, The minimum is 30, Conditional Compilation, , 264
Page 277 :
C++, , There are several directives, which can be used to compile selective portions of, your program's source code. This process is called conditional compilation., The conditional preprocessor construct is much like the ‘if’ selection structure., Consider the following preprocessor code:, #ifndef NULL, #define NULL 0, #endif, You can compile a program for debugging purpose. You can also turn on or off, the debugging using a single macro as follows:, #ifdef DEBUG, cerr <<"Variable x = " << x << endl;, #endif, This causes the cerr statement to be compiled in the program if the symbolic, constant DEBUG has been defined before directive #ifdef DEBUG. You can use, #if 0 statement to comment out a portion of the program as follows:, #if 0, code prevented from compiling, #endif, Let us try the following example:, #include <iostream>, using namespace std;, #define DEBUG, , #define MIN(a,b) (((a)<(b)) ? a : b), , int main (), {, int i, j;, i = 100;, j = 30;, #ifdef DEBUG, cerr <<"Trace: Inside main function" << endl;, #endif, 265
Page 278 :
C++, , #if 0, /* This is commented part */, cout << MKSTR(HELLO C++) << endl;, #endif, , cout <<"The minimum is " << MIN(i, j) << endl;, , #ifdef DEBUG, cerr <<"Trace: Coming out of main function" << endl;, #endif, return 0;, }, If we compile and run above code, this would produce the following result:, Trace: Inside main function, The minimum is 30, Trace: Coming out of main function, The # and # # Operators, The # and ## preprocessor operators are available in C++ and ANSI/ISO C. The, # operator causes a replacement-text token to be converted to a string, surrounded by quotes., Consider the following macro definition:, #include <iostream>, using namespace std;, , #define MKSTR( x ) #x, , int main (), {, cout << MKSTR(HELLO C++) << endl;, , return 0;, 266
Page 279 :
C++, , }, If we compile and run above code, this would produce the following result:, HELLO C++, Let us see how it worked. It is simple to understand that the C++ preprocessor, turns the line:, cout << MKSTR(HELLO C++) << endl;, Above line will be turned into the following line:, cout << "HELLO C++" << endl;, The ## operator is used to concatenate two tokens. Here is an example:, #define CONCAT( x, y ), , x ## y, , When CONCAT appears in the program, its arguments are concatenated and, used to replace the macro. For example, CONCAT(HELLO, C++) is replaced by, "HELLO C++" in the program as follows., #include <iostream>, using namespace std;, , #define concat(a, b) a ## b, int main(), {, int xy = 100;, , cout << concat(x, y);, return 0;, }, If we compile and run above code, this would produce the following result:, 100, Let us see how it worked. It is simple to understand that the C++ preprocessor, transforms:, cout << concat(x, y);, 267
Page 280 :
C++, , Above line will be transformed into the following line:, cout << xy;, Predefined C++ Macros, C++ provides a number of predefined macros mentioned below:, Macro, , Description, , __LINE__, , This contains the current line number of the program, when it is being compiled., , __FILE__, , This contains the current file name of the program, when it is being compiled., , __DATE__, , This contains a string of the form month/day/year that, is the date of the translation of the source file into, object code., , __TIME__, , This contains a string of the form hour:minute:second, that is the time at which the program was compiled., , Let us see an example for all the above macros:, #include <iostream>, using namespace std;, , int main (), {, cout << "Value of __LINE__ : " << __LINE__ << endl;, cout << "Value of __FILE__ : " << __FILE__ << endl;, cout << "Value of __DATE__ : " << __DATE__ << endl;, cout << "Value of __TIME__ : " << __TIME__ << endl;, , return 0;, }, If we compile and run above code, this would produce the following result:, 268
Page 282 :
36. SIGNAL HANDLING, , C++, , Signals are the interrupts delivered to a process by the operating system which, can terminate a program prematurely. You can generate interrupts by pressing, Ctrl+C on a UNIX, LINUX, Mac OS X or Windows system., There are signals which cannot be caught by the program but there is a, following list of signals which you can catch in your program and can take, appropriate actions based on the signal. These signals are defined in C++, header file <csignal>., Signal, , Description, , SIGABRT, , Abnormal termination of the program, such as a call to abort., , SIGFPE, , An erroneous arithmetic operation, such as a divide by zero or, an operation resulting in overflow., , SIGILL, , Detection of an illegal instruction., , SIGINT, , Receipt of an interactive attention signal., , SIGSEGV, , An invalid access to storage., , SIGTERM, , A termination request sent to the program., , The signal() Function, C++ signal-handling library provides function signal to trap unexpected events., Following is the syntax of the signal() function:, void (*signal (int sig, void (*func)(int)))(int);, Keeping it simple, this function receives two arguments: first argument as an, integer, which represents signal number and second argument as a pointer to, the signal-handling function., Let us write a simple C++ program where we will catch SIGINT signal using, signal() function. Whatever signal you want to catch in your program, you must, register that signal using signal function and associate it with a signal handler., Examine the following example:, #include <iostream>, 270
Page 283 :
C++, , #include <csignal>, , using namespace std;, , void signalHandler( int signum ), {, cout << "Interrupt signal (" << signum << ") received.\n";, , // cleanup and close up stuff here, // terminate program, , exit(signum);, , }, , int main (), {, // register signal SIGINT and signal handler, signal(SIGINT, signalHandler);, , while(1){, cout << "Going to sleep...." << endl;, sleep(1);, }, , return 0;, }, When the above code is compiled and executed, it produces the following result:, Going to sleep...., Going to sleep...., Going to sleep...., Now, press Ctrl+C to interrupt the program and you will see that your program, will catch the signal and would come out by printing something as follows:, 271
Page 284 :
C++, , Going to sleep...., Going to sleep...., Going to sleep...., Interrupt signal (2) received., The raise() Function, You can generate signals by function raise(), which takes an integer signal, number as an argument and has the following syntax., int raise (signal sig);, Here, sig is the signal number to send any of the signals: SIGINT, SIGABRT,, SIGFPE, SIGILL, SIGSEGV, SIGTERM, SIGHUP. Following is the example where, we raise a signal internally using raise() function as follows:, #include <iostream>, #include <csignal>, , using namespace std;, , void signalHandler( int signum ), {, cout << "Interrupt signal (" << signum << ") received.\n";, , // cleanup and close up stuff here, // terminate program, , exit(signum);, , }, , int main (), {, int i = 0;, // register signal SIGINT and signal handler, signal(SIGINT, signalHandler);, , 272
Page 285 :
C++, , while(++i){, cout << "Going to sleep...." << endl;, if( i == 3 ){, raise( SIGINT);, }, sleep(1);, }, , return 0;, }, When the above code is compiled and executed, it produces the following result, and would come out automatically:, Going to sleep...., Going to sleep...., Going to sleep...., Interrupt signal (2) received., , 273
Page 286 :
37. MULTITHREADING, , C++, , Multithreading is a specialized form of multitasking and a multitasking is the, feature that allows your computer to run two or more programs concurrently. In, general, there are two types of multitasking: process-based and thread-based., Process-based multitasking handles the concurrent execution of programs., Thread-based multitasking deals with the concurrent execution of pieces of the, same program., A multithreaded program contains two or more parts that can run concurrently., Each part of such a program is called a thread, and each thread defines a, separate path of execution., C++ does not contain any built-in support for multithreaded applications., Instead, it relies entirely upon the operating system to provide this feature., This tutorial assumes that you are working on Linux OS and we are going to, write multi-threaded C++ program using POSIX. POSIX Threads, or Pthreads, provides API which are available on many Unix-like POSIX systems such as, FreeBSD, NetBSD, GNU/Linux, Mac OS X and Solaris., Creating Threads, The following routine is used to create a POSIX thread:, #include <pthread.h>, pthread_create (thread, attr, start_routine, arg), Here, pthread_create creates a new thread and makes it executable. This, routine can be called any number of times from anywhere within your code., Here is the description of the parameters:, Parameter, , Description, , thread, , An opaque, unique identifier for the new thread returned, by the subroutine., , attr, , An opaque attribute object that may be used to set thread, attributes. You can specify a thread attributes object, or, NULL for the default values., , start_routine, , The C++ routine that the thread will execute once it is, created., 274
Page 287 :
C++, , arg, , A single argument that may be passed to start_routine. It, must be passed by reference as a pointer cast of type, void. NULL may be used if no argument is to be passed., , The maximum number of threads that may be created by a process is, implementation dependent. Once created, threads are peers, and may create, other threads. There is no implied hierarchy or dependency between threads., Terminating Threads, There is following routine which we use to terminate a POSIX thread:, #include <pthread.h>, pthread_exit (status), Here pthread_exit is used to explicitly exit a thread. Typically, the, pthread_exit() routine is called after a thread has completed its work and is no, longer required to exist., If main() finishes before the threads it has created, and exits with, pthread_exit(), the other threads will continue to execute. Otherwise, they will, be automatically terminated when main() finishes., , Example:, This simple example code creates 5 threads with the pthread_create() routine., Each thread prints a "Hello World!" message, and then terminates with a call to, pthread_exit()., #include <iostream>, #include <cstdlib>, #include <pthread.h>, , using namespace std;, , #define NUM_THREADS, , 5, , void *PrintHello(void *threadid), {, long tid;, tid = (long)threadid;, cout << "Hello World! Thread ID, " << tid << endl;, 275
Page 288 :
C++, , pthread_exit(NULL);, }, , int main (), {, pthread_t threads[NUM_THREADS];, int rc;, int i;, for( i=0; i < NUM_THREADS; i++ ){, cout << "main() : creating thread, " << i << endl;, rc = pthread_create(&threads[i], NULL,, PrintHello, (void *)i);, if (rc){, cout << "Error:unable to create thread," << rc << endl;, exit(-1);, }, }, pthread_exit(NULL);, }, Compile the following program using -lpthread library as follows:, $gcc test.cpp -lpthread, Now, execute your program which gives the following output:, main() : creating thread, 0, main() : creating thread, 1, main() : creating thread, 2, main() : creating thread, 3, main() : creating thread, 4, Hello World! Thread ID, 0, Hello World! Thread ID, 1, Hello World! Thread ID, 2, Hello World! Thread ID, 3, Hello World! Thread ID, 4, 276
Page 290 :
C++, , int i;, , for( i=0; i < NUM_THREADS; i++ ){, cout <<"main() : creating thread, " << i << endl;, td[i].thread_id = i;, td[i].message = "This is message";, rc = pthread_create(&threads[i], NULL,, PrintHello, (void *)&td[i]);, if (rc){, cout << "Error:unable to create thread," << rc << endl;, exit(-1);, }, }, pthread_exit(NULL);, }, When the above code is compiled and executed, it produces the following result:, main() : creating thread, 0, main() : creating thread, 1, main() : creating thread, 2, main() : creating thread, 3, main() : creating thread, 4, Thread ID : 3 Message : This is message, Thread ID : 2 Message : This is message, Thread ID : 0 Message : This is message, Thread ID : 1 Message : This is message, Thread ID : 4 Message : This is message, , Joining and Detaching Threads, There are following two routines which we can use to join or detach threads:, pthread_join (threadid, status), pthread_detach (threadid), , 278
Page 291 :
C++, , The pthread_join() subroutine blocks the calling thread until the specified, ‘threadid’ thread terminates. When a thread is created, one of its attributes, defines whether it is joinable or detached. Only threads that are created as, joinable can be joined. If a thread is created as detached, it can never be joined., This example demonstrates how to wait for thread completions by using the, Pthread join routine., #include <iostream>, #include <cstdlib>, #include <pthread.h>, #include <unistd.h>, , using namespace std;, , #define NUM_THREADS, , 5, , void *wait(void *t), {, int i;, long tid;, , tid = (long)t;, , sleep(1);, cout << "Sleeping in thread " << endl;, cout << "Thread with id : " << tid << ", , ...exiting " << endl;, , pthread_exit(NULL);, }, , int main (), {, int rc;, int i;, pthread_t threads[NUM_THREADS];, pthread_attr_t attr;, void *status;, 279
Page 293 :
C++, , main() : creating thread, 3, main() : creating thread, 4, Sleeping in thread, Thread with id : 0 .... exiting, Sleeping in thread, Thread with id : 1 .... exiting, Sleeping in thread, Thread with id : 2 .... exiting, Sleeping in thread, Thread with id : 3 .... exiting, Sleeping in thread, Thread with id : 4 .... exiting, Main: completed thread id :0, , exiting with status :0, , Main: completed thread id :1, , exiting with status :0, , Main: completed thread id :2, , exiting with status :0, , Main: completed thread id :3, , exiting with status :0, , Main: completed thread id :4, , exiting with status :0, , Main: program exiting., , 281
Page 294 :
38. WEB PROGRAMMING, , C++, , What is CGI?, The Common Gateway Interface, or CGI, is a set of standards that define how, information is exchanged between the web server and a custom script., The CGI specs are currently maintained by the NCSA and NCSA defines CGI is as, follows:, The Common Gateway Interface, or CGI, is a standard for external gateway, programs to interface with information servers such as HTTP servers., The current version is CGI/1.1 and CGI/1.2 is under progress., Web Browsing, To understand the concept of CGI, let's see what happens when we click a, hyperlink to browse a particular web page or URL., , , Your browser contacts the HTTP web server and demand for the URL i.e., filename., , , , Web Server will parse the URL and will look for the filename. If it finds the, requested file then web server sends that file back to the browser, otherwise sends an error message indicating that you have requested a, wrong file., , , , Web browser takes response from web server and displays either the, received file or error message based on the received response., , However, it is possible to set up the HTTP server in such a way that whenever a, file in a certain directory is requested, that file is not sent back; instead it is, executed as a program, and produced output from the program is sent back to, your browser to display., The Common Gateway Interface (CGI) is a standard protocol for enabling, applications (called CGI programs or CGI scripts) to interact with Web servers, and with clients. These CGI programs can be a written in Python, PERL, Shell, C, or C++ etc., , CGI Architecture Diagram, The following simple program shows a simple architecture of CGI:, 282
Page 295 :
C++, , Web Server Configuration, Before you proceed with CGI Programming, make sure that your Web Server, supports CGI and it is configured to handle CGI Programs. All the CGI Programs, to be executed by the HTTP server are kept in a pre-configured directory. This, directory is called CGI directory and by convention it is named as /var/www/cgibin. By convention CGI files will have extension as .cgi, though they are C++, executable., By default, Apache Web Server is configured to run CGI programs in, /var/www/cgi-bin. If you want to specify any other directory to run your CGI, scripts, you can modify the following section in the httpd.conf file:, <Directory "/var/www/cgi-bin">, AllowOverride None, Options ExecCGI, Order allow,deny, Allow from all, </Directory>, , 283
Page 296 :
C++, , <Directory "/var/www/cgi-bin">, Options All, </Directory>, Here, I assume that you have Web Server up and running successfully and you, are able to run any other CGI program like Perl or Shell etc., First CGI Program, Consider the following C++ Program content:, #include <iostream>, using namespace std;, , int main (), {, , cout << "Content-type:text/html\r\n\r\n";, cout << "<html>\n";, cout << "<head>\n";, cout << "<title>Hello World - First CGI Program</title>\n";, cout << "</head>\n";, cout << "<body>\n";, cout << "<h2>Hello World! This is my first CGI program</h2>\n";, cout << "</body>\n";, cout << "</html>\n";, , return 0;, }, Compile above code and name the executable as cplusplus.cgi. This file is being, kept in /var/www/cgi-bin directory and it has following content. Before running, your CGI program make sure you have change mode of file using chmod 755, cplusplus.cgi UNIX command to make file executable. Now if you, click cplusplus.cgi then this produces the following output:, My First CGI program, The above C++ program is a simple program which is writing its output on, STDOUT file i.e. screen. There is one important and extra feature available which, is first line printing Content-type:text/html\r\n\r\n. This line is sent back to, the browser and specify the content type to be displayed on the browser screen., 284
Page 297 :
C++, , Now you must have understood the basic concept of CGI and you can write, many complicated CGI programs using Python. A C++ CGI program can interact, with any other external system, such as RDBMS, to exchange information., HTTP Header, The line Content-type:text/html\r\n\r\n is a part of HTTP header, which is, sent to the browser to understand the content. All the HTTP header will be in the, following form:, HTTP Field Name: Field Content, , For Example, Content-type: text/html\r\n\r\n, There are few other important HTTP headers, which you will use frequently in, your CGI Programming., Header, , Description, , Content-type:, , A MIME string defining the format of the file being, returned. Example is Content-type:text/html., , Expires: Date, , The date the information becomes invalid. This should, be used by the browser to decide when a page needs, to be refreshed. A valid date string should be in the, format 01 Jan 1998 12:00:00 GMT., , Location: URL, , The URL that should be returned instead of the URL, requested. You can use this field to redirect a request, to any file., , Last-modified: Date, , The date of last modification of the resource., , Content-length: N, , The length, in bytes, of the data being returned. The, browser uses this value to report the estimated, download time for a file., , Set-Cookie: String, , Set the cookie passed through the string., , CGI Environment Variables, All the CGI program will have access to the following environment variables., These variables play an important role while writing any CGI program., 285
Page 298 :
C++, , Variable Name, , Description, , CONTENT_TYPE, , The data type of the content, used when the client is, sending attached content to the server. For example, file upload etc., , CONTENT_LENGTH, , The length of the query information that is available, only for POST requests., , HTTP_COOKIE, , Returns the set cookies in the form of key & value, pair., , HTTP_USER_AGENT, , The, User-Agent, request-header, field, contains, information about the user agent originating the, request. It is a name of the web browser., , PATH_INFO, , The path for the CGI script., , QUERY_STRING, , The URL-encoded information that is sent with GET, method request., , REMOTE_ADDR, , The IP address of the remote host making the, request. This can be useful for logging or for, authentication purpose., , REMOTE_HOST, , The fully qualified name of the host making the, request. If this information is not available then, REMOTE_ADDR can be used to get IR address., , REQUEST_METHOD, , The method used to make the request. The most, common methods are GET and POST., , SCRIPT_FILENAME, , The full path to the CGI script., , SCRIPT_NAME, , The name of the CGI script., , SERVER_NAME, , The server's hostname or IP Address., , SERVER_SOFTWARE, , The name and version of the software the server is, running., 286
Page 301 : C++, , SERVER_ADMIN, ,
[email protected], , SERVER_NAME, , www.tutorialspoint.com, , SERVER_PORT, , 80, , SERVER_PROTOCOL, , HTTP/1.1, , SERVER_SIGNATURE, SERVER_SOFTWARE, , Apache, , <, C++ CGI Library, For real examples, you would need to do many operations by your CGI program., There is a CGI library written for C++ program which you can download from, ftp://ftp.gnu.org/gnu/cgicc/ and follow the steps to install the library:, $tar xzf cgicc-X.X.X.tar.gz, $cd cgicc-X.X.X/, $./configure --prefix=/usr, $make, $make install, You can check related documentation available at ‘C++ CGI Lib Documentation’., GET and POST Methods, You must have come across many situations when you need to pass some, information from your browser to web server and ultimately to your CGI, Program. Most frequently browser uses two methods to pass this information to, web server. These methods are GET Method and POST Method., Passing Information Using GET Method, The GET method sends the encoded user information appended to the page, request. The page and the encoded information are separated by the ‘?’, character as follows:, http://www.test.com/cgi-bin/cpp.cgi?key1=value1&key2=value2, The GET method is the default method to pass information from browser to web, server and it produces a long string that appears in your browser's Location:box., Never use the GET method if you have password or other sensitive information, to pass to the server. The GET method has size limitation and you can pass up, to 1024 characters in a request string., When using GET method, information is passed using QUERY_STRING http, header and will be accessible in your CGI Program through QUERY_STRING, environment variable., 289
Page 302 :
C++, , You can pass information by simply concatenating key and value pairs along, with any URL or you can use HTML <FORM> tags to pass information using GET, method., Simple URL Example: Get Method, Here is a simple URL which will pass two values to hello_get.py program using, GET method., /cgi-bin/cpp_get.cgi?first_name=ZARA&last_name=ALI, Below is a program to generate cpp_get.cgi CGI program to handle input given, by web browser. We are going to use C++ CGI library which makes it very easy, to access passed information:, #include <iostream>, #include <vector>, #include <string>, #include <stdio.h>, #include <stdlib.h>, , #include <cgicc/CgiDefs.h>, #include <cgicc/Cgicc.h>, #include <cgicc/HTTPHTMLHeader.h>, #include <cgicc/HTMLClasses.h>, , using namespace std;, using namespace cgicc;, , int main (), {, Cgicc formData;, , cout << "Content-type:text/html\r\n\r\n";, cout << "<html>\n";, cout << "<head>\n";, cout << "<title>Using GET and POST Methods</title>\n";, cout << "</head>\n";, cout << "<body>\n";, 290
Page 304 :
C++, , First Name: <input type="text" name="first_name">, , <br />, , Last Name: <input type="text" name="last_name" />, <input type="submit" value="Submit" />, </form>, Here is the actual output of the above form. You enter First and Last Name and, then click submit button to see the result., , First Name:, Last Name:, , Submit, , Passing Information Using POST Method, A generally more reliable method of passing information to a CGI program is the, POST method. This packages the information in exactly the same way as GET, methods, but instead of sending it as a text string after a ‘?’ in the URL it sends, it as a separate message. This message comes into the CGI script in the form of, the standard input., The same cpp_get.cgi program will handle POST method as well. Let us take, same example as above, which passes two values using HTML FORM and submit, button but this time with POST method as follows:, <form action="/cgi-bin/cpp_get.cgi" method="post">, First Name: <input type="text" name="first_name"><br />, Last Name: <input type="text" name="last_name" />, , <input type="submit" value="Submit" />, </form>, Here is the actual output of the above form. You enter First and Last Name and, then click submit button to see the result., , First Name:, Last Name:, , Submit, , Passing Checkbox Data to CGI Program, Checkboxes are used when more than one option is required to be selected., 292
Page 308 :
C++, , if( !fi->isEmpty() && fi != (*formData).end()) {, cout << "Radio box selected: " << **fi << endl;, }, , cout << "<br/>\n";, cout << "</body>\n";, cout << "</html>\n";, , return 0;, }, Passing Text Area Data to CGI Program, TEXTAREA element is used when multiline text has to be passed to the CGI, Program., Here is example HTML code for a form with a TEXTAREA box:, <form action="/cgi-bin/cpp_textarea.cgi", method="post", target="_blank">, <textarea name="textcontent" cols="40" rows="4">, Type your text here..., </textarea>, <input type="submit" value="Submit" />, </form>, The result of this code is the following form:, , Submit, , Below is C++ program, which will generate cpp_textarea.cgi script to handle, input given by web browser through text area., #include <iostream>, #include <vector>, #include <string>, #include <stdio.h>, 296
Page 311 :
C++, , cout << "Content-type:text/html\r\n\r\n";, cout << "<html>\n";, cout << "<head>\n";, cout << "<title>Drop Down Box Data to CGI</title>\n";, cout << "</head>\n";, cout << "<body>\n";, , form_iterator fi = formData.getElement("dropdown");, if( !fi->isEmpty() && fi != (*formData).end()) {, cout << "Value Selected: " << **fi << endl;, }, , cout << "<br/>\n";, cout << "</body>\n";, cout << "</html>\n";, , return 0;, }, Using Cookies in CGI, HTTP protocol is a stateless protocol. But for a commercial website it is required, to maintain session information among different pages. For example one user, registration ends after completing many pages. But how to maintain user's, session information across all the web pages., In many situations, using cookies is the most efficient method of remembering, and tracking preferences, purchases, commissions, and other information, required for better visitor experience or site statistics., How It Works, Your server sends some data to the visitor's browser in, browser may accept the cookie. If it does, it is stored, the visitor's hard drive. Now, when the visitor arrives, site, the cookie is available for retrieval. Once, knows/remembers what was stored., , the form of a cookie. The, as a plain text record on, at another page on your, retrieved, your server, , Cookies are a plain text data record of 5 variable-length fields:, , , Expires: This showsthe date the cookie will expire. If this is blank, the, cookie will expire when the visitor quits the browser., 299
Page 312 :
C++, , , , Domain: This is the domain name of your site., , , , Path: This is the path to the directory or web page that sets the cookie., This may be blank if you want to retrieve the cookie from any directory or, page., , , , Secure: If this field contains the word "secure" then the cookie may only, be retrieved with a secure server. If this field is blank, no such restriction, exists., , , , Name=Value: Cookies are set and retrieved in the form of key and value, pairs., , Setting up Cookies, It is very easy to send cookies to browser. These cookies will be sent along with, HTTP Header before the Content-type filed. Assuming you want to set UserID, and Password as cookies. So cookies setting will be done as follows:, #include <iostream>, using namespace std;, , int main (), {, , cout << "Set-Cookie:UserID=XYZ;\r\n";, cout << "Set-Cookie:Password=XYZ123;\r\n";, cout << "Set-Cookie:Domain=www.tutorialspoint.com;\r\n";, cout << "Set-Cookie:Path=/perl;\n";, cout << "Content-type:text/html\r\n\r\n";, , cout << "<html>\n";, cout << "<head>\n";, cout << "<title>Cookies in CGI</title>\n";, cout << "</head>\n";, cout << "<body>\n";, , cout << "Setting cookies" << endl;, , cout << "<br/>\n";, cout << "</body>\n";, 300
Page 313 :
C++, , cout << "</html>\n";, , return 0;, }, From this example, you must have understood how to set cookies. We use SetCookie HTTP header to set cookies., Here, it is optional to set cookies attributes like Expires, Domain, and Path. It is, notable that cookies are set before sending magic line "Contenttype:text/html\r\n\r\n., Compile above program to produce setcookies.cgi, and try to set cookies using, following link. It will set four cookies at your computer:, /cgi-bin/setcookies.cgi, Retrieving Cookies, It is easy to retrieve all the set cookies. Cookies are stored in CGI environment, variable HTTP_COOKIE and they will have following form., key1=value1;key2=value2;key3=value3...., Here is an example of how to retrieve cookies., #include <iostream>, #include <vector>, #include <string>, #include <stdio.h>, #include <stdlib.h>, , #include <cgicc/CgiDefs.h>, #include <cgicc/Cgicc.h>, #include <cgicc/HTTPHTMLHeader.h>, #include <cgicc/HTMLClasses.h>, , using namespace std;, using namespace cgicc;, , int main (), {, 301
Page 315 :
C++, , This will produce a list of all the four cookies set in previous section and all other, cookies set in your computer:, UserID XYZ, Password XYZ123, Domain www.tutorialspoint.com, Path /perl, File Upload Example, To upload a file the HTML form must have the enctype attribute set, to multipart/form-data. The input tag with the file type will create a "Browse", button., <html>, <body>, <form enctype="multipart/form-data", action="/cgi-bin/cpp_uploadfile.cgi", method="post">, <p>File: <input type="file" name="userfile" /></p>, <p><input type="submit" value="Upload" /></p>, </form>, </body>, </html>, The result of this code is the following form:, File:, Upload, , Note: Above example has been disabled intentionally to stop people uploading, files on our server. But you can try above code with your server., Here is the script cpp_uploadfile.cpp to handle file upload:, #include <iostream>, #include <vector>, #include <string>, #include <stdio.h>, #include <stdlib.h>, , 303
Page 317 :
C++, , The above example is for writing content at cout stream but you can open your, file stream and save the content of uploaded file in a file at desired location., Hope you have enjoyed this tutorial. If yes, please send us your feedback., , 305
Page 318 :
39. STL TUTORIAL, , C++, , Hope you have already understood the concept of C++ Template which we have, discussed earlier. The C++ STL (Standard Template Library) is a powerful set of, C++ template classes to provide general-purpose classes and functions with, templates that implement many popular and commonly used algorithms and, data structures like vectors, lists, queues, and stacks., At the core of the C++ Standard Template Library are following three wellstructured components:, Component, , Description, , Containers, , Containers are used to manage collections of objects, of a certain kind. There are several different types of, containers like deque, list, vector, map etc., , Algorithms, , Algorithms act on containers. They provide the means, by which you will perform initialization, sorting,, searching, and transforming of the contents of, containers., , Iterators, , Iterators are used to step through the elements of, collections of objects. These collections may be, containers or subsets of containers., , We will discuss about all the three C++ STL components in next chapter while, discussing C++ Standard Library. For now, keep in mind that all the three, components have a rich set of pre-defined functions which help us in doing, complicated tasks in very easy fashion., Let us take the following program that demonstrates the vector container (a, C++ Standard Template) which is similar to an array with an exception that it, automatically handles its own storage requirements in case it grows:, #include <iostream>, #include <vector>, using namespace std;, , int main(), {, 306
Page 319 :
C++, , // create a vector to store int, vector<int> vec;, int i;, , // display the original size of vec, cout << "vector size = " << vec.size() << endl;, , // push 5 values into the vector, for(i = 0; i < 5; i++){, vec.push_back(i);, }, , // display extended size of vec, cout << "extended vector size = " << vec.size() << endl;, , // access 5 values from the vector, for(i = 0; i < 5; i++){, cout << "value of vec [" << i << "] = " << vec[i] << endl;, }, , // use iterator to access the values, vector<int>::iterator v = vec.begin();, while( v != vec.end()) {, cout << "value of v = " << *v << endl;, v++;, }, , return 0;, }, When the above code is compiled and executed, it produces the following result:, vector size = 0, extended vector size = 5, value of vec [0] = 0, 307
Page 320 :
C++, , value of vec [1] = 1, value of vec [2] = 2, value of vec [3] = 3, value of vec [4] = 4, value of v = 0, value of v = 1, value of v = 2, value of v = 3, value of v = 4, Here are following points to be noted related to various functions we used in the, above example:, , , The push_back( ) member function inserts value at the end of the vector,, expanding its size as needed., , , , The size( ) function displays the size of the vector., , , , The function begin( ) returns an iterator to the start of the vector., , , , The function end( ) returns an iterator to the end of the vector., , 308
Page 321 :
40. STANDARD LIBRARY, , C++, , The C++ Standard Library can be categorized into two parts:, , , The Standard Function Library: This library consists of generalpurpose, stand-alone functions that are not part of any class. The function, library is inherited from C., , , , The Object Oriented Class Library: This is a collection of classes and, associated functions., , Standard C++ Library incorporates all the Standard C libraries also, with small, additions and changes to support type safety., The Standard Function Library, The standard function library is divided into the following categories:, , , I/O,, , , , String and character handling,, , , , Mathematical,, , , , Time, date, and localization,, , , , Dynamic allocation,, , , , Miscellaneous,, , , , Wide-character functions, , The Object Oriented Class Library, Standard C++ Object Oriented Library defines an extensive set of classes that, provide support for a number of common activities, including I/O, strings, and, numeric processing. This library includes the following:, , , The Standard C++ I/O Classes, , , , The String Class, , , , The Numeric Classes, , , , The STL Container Classes, , , , The STL Algorithms, , , , The STL Function Objects, , , , The STL Iterators, , , , The STL Allocators, 309
Page 322 :
C++, , , , The Localization library, , , , Exception Handling Classes, , , , Miscellaneous Support Library, , 310