Page 3 :
SECTION-A, , IÊS-A, , 1., , 2 1, If A 1 , , then A is equal to, 1, 1, , , , [1], , 2 1, (A) , , 1 1 , , 2 1 , (B) , , 1 1 , , 1 1, (C) , , 1 2 , , 2 1, (D) , , 1 1, , 2 1, h¡, Vmo A ~am~a h¡ :, 1 1, , ¶{X A 1 , , 2., , 2 1, (A) , , 1 1 , , 2 1 , (B) , , 1 1 , , 1 1, (C) , , 1 2 , , 2 1, (D) , , 1 1, , cos(tan–1 x) is equal to, , [1], , (A), , 1, 2, x 1, , (B), , (C), , 1, x2 1, , (D), , 60/OSS/1/311-A], , G-607, , 3, , 1, 1 x2, , x2 1, , *60/OSS/1/311-A*, , [ Contd......
Page 4 :
cos(tan–1 x) ~am~a h¡ :, , 3., , (A), , 1, x 1, , (B), , (C), , 1, x 1, , (D), , 2, , 2, , 1, 1 x2, x2 1, , Let f : be defined by f (x) = 2x + 3, x. Then f is, , [1], , (A) one to one but not onto, (B) onto but not one to one, (C) neither one to one nor onto, (D) one to one and onto, , ‘mZm f : na f (x) = 2x + 3, x Ûmam n[a^m{fV EH$ ’$bZ h¡& Vmo f EH$, (A) EH¡$H$s naÝVw AmN>mXH$ Zht, ’$bZ h¡, (B) AmN>mXH$ naÝVw EH¡$H$s Zht, ’$bZ h¡, (C) Z Vmo EH¡$H$s Am¡a Z hr AmN>mXH$, ’$bZ h¡, (D) EH¡$H$s Am¡a AmN>mXH$, ’$bZ h¡, , 4., , , , 3, , 2, , (A), , 2 x, dx is equal to, 2 x x3, , [1], , 1, 2, , (B) 0, (D) 4, , (C) –1, , 60/OSS/1/311-A], , G-607, , 4, , *60/OSS/1/311-A*, , [ Contd......
Page 5 :
, , 3, , 2, , (A), , 2 x, dx ~am~a h¡ :, 2 x x3, , 1, 2, , (B) 0, (D) 4, , (C) –1, , 5., , 1, 1 , log x log x 2 dx is equal to, , , , [1], , (A), , x, c, log x, , (B), , 2x, c, log x, , (C), , x, c, 2log x, , (D), , 1, c, log x, , 1, 1 , , , log x log x 2 dx ~am~a h¡ :, , , , (A), , x, c, log x, , (B), , 2x, c, log x, , (C), , x, c, 2log x, , (D), , 1, c, log x, , 60/OSS/1/311-A], , G-607, , 5, , *60/OSS/1/311-A*, , [ Contd......
Page 6 :
6., , If y = xtan x, then, , dy, is euqal to, dx, , [1], , tan x x(log x)sec 2 x, (A) y, x, , tan x x(log x)sec2 x, (B) y, x, , tan x sec x , 2, , (C), , 2, , (D), , x, , ¶{X y = xtan x h¡, Vmo, , x, , dy, ~am~a h¡ :, dx, , tan x x(log x)sec 2 x, (A) y, x, , tan x x(log x)sec2 x, (B) y, x, , x tan x sec x , 2, , tan x sec 2 x, (C), x, , 7., , x tan x sec x , , (D), , General solution of the differential equation is, , x, , dy, 4 tan y equal to, dx, , (A) sin y = cex, , (B) y = sin–1(ce4x), , (C) y = cos–1(ce4x), , (D) y = sin–1(ce–4x), , AdH$b g‘rH$aU, , dy, 4 tan y H$m ì¶mnH$> hb h¡ :, dx, , (A) sin y = cex, , (B) y = sin–1(ce4x), , (C) y = cos–1(ce4x), , (D) y = sin–1(ce–4x), , 60/OSS/1/311-A], , [1], , G-607, , 6, , *60/OSS/1/311-A*, , [ Contd......
Page 8 :
10. If the perpendicular distance from the point (2, K, 0) to the plane 4x – 2y + 3z = 12, is, , 4, unit, then possible values of K are :, 29, , [1], , (A) 1, 4, , (B) –1, 3, , (C) 0, –4, , (D) 0, 4, , {~ÝXþ (2, K, 0) go Vb 4x – 2y + 3z = 12 H$s bå~dV² Xÿar, , 4, BH$mB© h¡& K Ho$ gå^dV… ‘mZ h¢ :, 29, , (A) 1, 4, , (B) –1, 3, , (C) 0, –4, , (D) 0, 4, , SECTION-B, , IÊS - ~, 0 7 43 , , 0 47 , then show that |A| = 0., 11. If A 7, 43 47, 0 , , , [2], , 0 7 43 , 0 47 h¡, Vmo Xem©BE H$s{OE {H$ |A| = 0, ¶{X A 7, 43 47, 0 , , , OR/AWdm, 2, 1 2, For A , , verify that A 2 A ., , 3 2, , 2, 1 2, 2, Ho, $, {bE, g˶m{nV, H$s{OE, {H$, A, , A, A, , , , 3 2, , 60/OSS/1/311-A], , G-607, , 8, , *60/OSS/1/311-A*, , [ Contd......
Page 10 :
16. Write the converse the following statements :, a), , If game is cancelled, then team A is win., , b), , If a is a multiple of b then b is a factor of a., , [2], , {ZåZ H$WZm| Ho$ {dbmo‘ {b{IE :, a), , ¶{X Iob aÔ hmoVm h¡, Vmo Q>r‘ A OrVVr h¡&, , b), , ¶{X a, b H$m JwUO h¡, Vmo b, a H$m JwUZI§S> h¡&, , SECTION - C, , IÊS - g, , a 2 2a 2a 1 1, 2a 1, 17. Show that, 3, , a 2 1 a 1, ., 3, 1, 3, , [4], , a 2 2a 2a 1 1, 3, 2a 1 a 2 1 a 1, Xem©BE {H$, 3, 3, 1, , 3 1, 18. If A , , find x and y so that A2 + xI2 = yA., , 6 5, , [4], , 3 1, Ho$ {bE A2 + xI2 = yA h¡, Vmo x Am¡a y H$m ‘mZ kmV H$s{OE&, , 6 5, , ¶{X A , , 60/OSS/1/311-A], , G-607, , 10, , *60/OSS/1/311-A*, , [ Contd......
Page 11 :
1, 19. Solve the following equation for x(x > 0) : sin, , 1, x(x > 0) Ho$ {bE {ZåZ g‘rH$aU H$mo hb H$s{OE : sin, , 6, 8 , sin 1 , x, x 2, , [4], , 6, 8 , sin 1 , x, x 2, , 20. Determine the values of a, b for which the function, , [4], , | x 2 |, x 2 a , x 2,, , f ( x ) a b, , x 2,, , 2 x b, , x 2, , , is continuous at x = –2., a Am¡a b Ho$ do ‘mZ kmV H$s{OE, {OZHo$ {bE ’$bZ, | x 2 |, x 2 a , x 2,, , f ( x ) a b, , x 2,, , 2 x b, , x 2, , , x = –2 na gVV h¡&, , 21. Find the interval in which the function f (x) = 2x3 + 9x2 + 12x + 20 are increasing or, decreasing., [4], , do A§Vamb kmV H$s{OE, {OZ na ’$bZ f (x) = 2x3 + 9x2 + 12x + 20 dY©‘mZ ¶m ömg‘mZ h¡&, OR/AWdm, , 60/OSS/1/311-A], , G-607, , 11, , *60/OSS/1/311-A*, , [ Contd......
Page 13 :
25. Solve the following differential equation :, , [4], , , dy, sin( x y ) sin( x y ), given y when x = 0., dx, 2, , {ZåZ AdH$b g‘rH$aU H$mo hb H$s{OE :, dy, sin( x y ) sin( x y ) ,, dx, , {X¶m h¡ {H$ O~ x = 0 Vmo y , , , 2, OR/AWdm, , Form the differential equation corresponding to y = ex(a cosx + b sinx) by eliminating, 'a' and 'b'., a Am¡a b H$m {dbmonZ H$aVo hþE y = ex(a cosx + b sinx) Ho$ g§JV AdH$b g‘rH$aU ~ZmBE&, , 26. Find the equation of the line passing through the point (–1, –3, –2) and perpendicular, to the lines, , x y z, x 2 y 1 z 1, and, , , ., 3, 2, 5, 1 2 3, , {~ÝXþ (–1, –3, –2) go JwOaZo dmbr Am¡a aoImAm|, , [4], , x y z, x 2 y 1 z 1, VWm, , , Ho$ bå~dV², 3, 2, 5, 1 2 3, , aoIm H$m g‘rH$aU kmV H$s{OE&, , 60/OSS/1/311-A], , G-607, , 13, , *60/OSS/1/311-A*, , [ Contd......